
AD-A145 757 A METH000LOGY FOR THE ANALYSIS OF PROGRAMMER /
IPRODUCTIIT AND EFFORT ESTI.U) AI NFORCE INST OF

T ECH WRIOHT-PATTERSON AFB OH J D ERNANDEZ MAY 84
UN C7 AFITClNR-RH 44D FIG 9/2 N

HIMI

IIII8Im
11111 11111j*43 .6

MICROCOPY RESOLUTION TEST CHART

NA',0NA. BuREA. OF STANDARDS -.963-

IINrI A ,
SECURITY CLASSIFICATION OF T0IS PACE (Whon Date Entered)

REPORT DOCUMENTATION PAGE READ INSTRUCTIONS• BEFORE COMPLETING FORM

I. REPORT HUMBER GOVT ACCESSION NO. 3. RECIPIENT'S CATALOG NUM13ER

10 AFIT/CI/NR 84-44D _ _ ___)___________

4. TITLE (.,d S..benli) PR#fQP6rV/rV S. TYPE OF REPORT A PERIOD COVERED
A Methodology For The Analysis Of Programmer
And Effort Estimation Within The Framework Of 10EM/DISSERTATION
Software Conversion G. PERFORMING 01G. REPORT NUMBER

7. AUTNOR(s) 8. CONTRACT OR GRANT NUMBER(s)

John D. Fernandez

9' PERFORMING ORGANIZATION NAME AND ADORESS 10. PROGRAM ELEMENT, PROJECT, TASK~AREA &I WORK UNIT NUMBERS

AFIT STUDENT AT: Texas A&M University

II. CONTROLLING OFFICE 'PME AND ADDRESS 12. REPORT DATE

AFIT/NR 220
WPAFB OH 45433 13. NUMBER OF PAGES

1984
14. MONITORING AGENC'NAME A ADORESS(It different from Controlling Office) IS. SECURITY CLASS. (01 thie report)

UNCLASS
ISa. DECL ASSIFICATION/OOWNGRADING

SCHEDULE

16. DISTRIBUTION ".-ATEMENT (of this Report)

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED DELEC T Eh

17. DISTRIBUTON STATEMENT (of the abstract entered in Block 20, if different IroSE Report

B .

IS. SUPPLEMENTARY NOTES

APPROVED FOR PUBLIC RELEASE: IAW AFR 190-1/ DeaN Er R a
/ Dean for Research and

Professional Developmen
0 J. rV AFIT, Wright-Patterson AFB OH

CL 19. KEY WORDS (Continue on reverase lde f necessary and Identify by block Numbir)

C)

LZ1

20. ABSTRACT (Continue on reverse aide It necessary and identify by block number)

~ ATTACHED

DD JAN 1473 EDITION OF I NOV 55 IS OBSOLETE UNCLASS
SECURITY CLASSIFICATIC'N OF THIS PAGE (R7hen Data Entered)84 09 13 007

ABSTRACT

A Methodology For The Analysis Of Programmer Productivity And Effort

Estimation Within The Framework of Software Conversion (May 1984)

John Diego Fernandez, B.A., Texas A&I University;

M.S.E., West Virginia University

Software conversion is becoming increasingly significant as the

inventory of programs increases and as the life cycle of many

applications becomes longer. Although some work has been done in the

area of software conversion, it has received little research

attention since it has only recently become a more frequent

occurrence. This research considered two aspects of software

conversion and developed a methodology for the statistical analysis

or conversion sample data from the ongoing U.S. Air Force Base Level

Dnta Automation Program(officially given the short title Phase IV).

The two areas specifically addressed by this research were

programmer productivity and effort estimation. Programmer attributes

;-Lnd program characteristics were studied in relation to programmer

oroductivity in software conversion. Models for explaining

productivity were constructed and the impact of organization was also

considered. Existing applicable models for software conversion

effort estimation were e..amined and their accuracy was evaluated.

tA

Environment specific regression models for effort estimation were

also constructed.

Several statistical and summarizing techniques were considered

for the analysis of the conversion sample data. As various aspects

of the data were studied, selected statistical techniques emerged as

more appropriate. These provided the basis for the methodology

formulated and used throughout the data analysis. The Air Force data

was utilized in a case study of the application of the methodology.

The analysis of conversion programmer productivity revealed that

experience, lines of code, a programmer's knowledge of the program,

organization, and other factors and attributes impacted productivity.

Of the effort estimation models studied, the Hahn and Stone model

exhibited the best performance while the Federal Conversion Support

Center model had the lowest accuracy.

* Accession For

NTIS GPIAkI
* DTIC TI.c

(JuztiY PAItto-1---_-

D Di-,t r Ibut." o I/
Ava labill ty Co5 es

Ditt '. lo I

\lii
. ,,.

AFIT/CI/NR 84-44D

AFIT RESEARCH ASSESSMENT

The purpose of this questionnaire is to ascertain the value ayid/or contribution of research
accomplished by students or faculty of the Air Force Institute of Technology (AU). It would be
greatly appreciated if you would complete the following questionnaire and return it to:

AFIT/NR
Wright-Patterson AFB OH 45433pRqpivc.r1"/fT),

RESEARCH TITLE: A Mpthndology For The Analysis Of Programmer And Effort Estimation Within
The Framework Of Software Conversion

AUTHOR: John D. Fernandez

RESEARCH ASSESSMENT QUESTIONS:

1. Did this research contribute to a current Air Force project?

() a. YES () b. NO

2. Do you believe this research topic is significant enough that it would have been researched
(or contracted) by your organization or another agency if AFIT had not?

() a. YES () b. NO

3. The benefits of AFIT research can often be expressed by the equivalent value that your
agency achieved/received by virtue of AFIT performing the research. Can you estimate what this
research would have cost if it had been accomplished under contract or if it had been done in-house
in terms of manpower and/or dollars?

a. MAN-YEARS () b. $

4. Often it is not possible to attach equivalent dollar values to research, although the
results of the research may, in fact, be important. Whether or not you were able to establish an
equivalent value for this research (3. above), what is your estimate of its significance?

a. HIGHLY () b. SIGNIFICANT () c. SLIGHTLY () d. OF NO
SIGNIFICANT SIGNIFICANT SIGNIFICANCE

5. AFIT welcomes any further comments you may have on the above questions, or any additional
details concerning the current application, future potential, or other value of this research.
Please use the bottom part of this questionnaire for your statement(s).

NAME GRADE POSITION

ORGANIZATION LOCATION

STATEMENT(s):

A METHODOLOGY FOR THE ANALYSIS OF PROGRAMMER PRODUCTIVITY AND EFFORT

ESTIMATION WITHIN THE FRAMEWORK OF SOFTWARE CONVERSION

A Dissertation

by

JOHN DIEGO FERNANDEZ

Submitted to the Graduate College of
Texas A&M University

in partial fulfillment of the requirements for the degree of

DOCTOR OF PHILOSOPHY

May 1984

Major Subject: Computer Science

84 09 13 007

A METHODOLOGY FOR THE ANALYSIS OF PROGRAMMER PRODUCT vITY AND EFFORT

ESTIMATION WITHIN THE FRAMEWORK OF SOFTWARE CONVERSION

A Dissertation

by

JOHN DIEGO FERNANDEZ

Approved as to style and content by:

S.V. Sheppard'

(Chairma

LDL-/7"" ____--_

W.M.'L.ively D.B. Simmons
(Member) Q, (Member)

W.L. Fuerst B.H. McCormick
(Member) (Head cf Decar-menz,

May 1984

. . . a .. . " " , --' - = .. -.. . . , , -. -. . .. -.

iii

ABSTRACT

A Methodology For The Analysis Of Programmer Productivity And Effort

Estimation Within The Framework of Software Conversion (May 1984)

John Diego Fernandez, B.A., Texas A&I University;

M.S.E., West Virginia University

Chairman of Advisory Committee: Dr. S.V. Sheppard

Software conversion is becoming increasingly significant as the

inventory of programs increases and as the life cycle of many

applications becomes longer. Although some work has been done in the

area of software conversion, it has received little research

attention since it has only recently become a more frequent

occurrence. This research considered two aspects of software

conversion and developed a methodology for the statistical analysis

of conversion sample data from the ongoing U.S. Air Force Base Level

Data Automation Program(officially given the short title Phase IV).

The two areas specifically addressed by this research were

programmer productivity and effort estimation. Programmer attributes

and program characteristics were studied in relation to programmer

productivity in software conversion. Models for explaining

productivity were constructed and the impact of organization was also

considered. Existing applicable models for software conversion

effort estimation were examined and their accuracy was evaluated.

iv

Environment specific regression models for effort estimation were

also constructed.

Several statistical and summarizing techniques were considered

for the analysis of the conversion sample data. As various aspects

of the data were studied, selected statistical techniques emerged as

more appropriate. These provided the basis for the methodology

formulated and used throughout the data analysis. The Air Force data

was utilized in a case study of the application of the methodology.

Unique features of the data which entered the analysis included

government programmers, less than half being college graduates,

working in different organizations and converting COBOL-68 programs

to COBOL-74 with the maximum program length being 5000 lines. The

analysis of conversion programmer productivity revealed that

experience, lines of code, a programmer's knowledge of the program,

organization, and other factors and attributes impacted productivity.

In addition, the Hahn and Stone effort estimation model exhibited the

best performance in estimating system level effort while the Federal

Conversion Support Center model had the lowest accuracy. Other

effort models were also studied.

V

ACKNOWLEDGEMENTS

First, I thank my wife Mary and our children, Daniel and Monica,

for their love and understanding and for getting along without me for

much of the time that I worked on this project. I then acknowledge

my chairperson Dr. Sallie V. Sheppard who became a trusted friend and

whose encouragement and confidence helped to sustain me through the

rough spots of this endeavor. I thank Dr. W.M. Lively and Dr. D.B.

Simmons for their support and for helping to adjust the focus of my

research objectives. Dr. W.L. Fuerst provided a welcomed broader

perspective. Dr. R.P. Schmitt, my Graduate College Representative,

was always very supportive and readily available. Mr. Eddy

Fernandez, C.D.P., suggested some ideas to pursue for more efficient

data entry. iLt J. Cogburn and 2Lt R. Naylor, of the Air Force

Automated Systems Project Office(AFASPO), provided the data and

invaluable support for this research. I especially thank Col. R.

Hedges who approved the release of the data. Four other Air Force

organizations, AFDSDC, TAC, SAC and ATC, provided additional

information. Capt Ken Hebert's experience with Phase IV prompted my

investigation of the conversion area. I thank Anne Coleman from the

Statistics Department for her guidance during the research and for

reviewing the manuscript.

There are many individuals at Texas A&M University, with whom I

came in contact, that made my time here a very worthwhile and

rewarding experience.

Last but not at all least, I thank the Lord for being there!

vi

TABLE OF CONTENTS

CHAPTER Page

INTRODUCTION 1

Description of the Conversion Problem 2
Software Conversion Fundamentals 4
Current Research Interest in Conversion 6
Air Force Base Level Data Automation Program 8
Overview of Research and Chapter Summary 9

II PANORAMIC VIEW OF SOFTWARE CONVERSION 11

Conversion Types and Techniques ii
Conversion Process 17

Conversion Planning 19
Management Concerns 22
The Contracting Option 25
Conversion Tools 25

III CONVERSION EFFORT ESTIMATION AND PRODUCTIVITY 28

Cost/Effort Estimation 29
Basic Estimating Concepts 30
Conversion Effort/Cost Estimation Models 32
Development Models of Interest 35

Software Conversion Productivity 37
Productivity Measurements 37
Productivity Studies 40

IV AIR FORCE PHASE IV PROGRAM 51

Program Prescription 51
Phase IV Materialization 53
Conversion Assistance, Tools and Procedures 54
Initial Conversion Experiences 57
Conversion Effort Data Collection 59

V CONVERSION PROGRAMMER PRODUCTIVITY ANALYSIS 66

Introduction 66
Preliminary Analysis 66
Definitions and Assumptions 67
General Overview of Analysis Methodology 68

Selection of Relevant Variables 69

vii

Table of Contents (Continued)

CHAPTER Page

Categorical Variables Subjected to Analysis of
Variance 69
Continuous Variables Scrutinized. 74
Model Variables Selected 76

Model Specification and Analysis 76
Initial Model Analysis 77
Reduction of Initial Model 79
Alternate Dependent Variable Models 84
Consideration of Organizational Impact 88
Model Validation 90

VI SOFTWARE CONVERSION EFFORT ESTIMATION ANALYSIS 94

Introduction 94
Respecification of Effort Estimation Models 96

FCSC Cost Model 97
Hahn and Stone or MITRE Model 101
Grim, Epler and Andrus Model103
Wolberg Model 104
Basili and Freburger Model 105

Validation of Existing Models 106
Measurement of Accuracy of Basic Models 106
Analysis of Refined Models 108

Development of Models With Regression Analysis 112
Exponential Form Effort Model 113
Additive Form Effort Model 114
Final Comparison of Models 115
Organizational Impact Model117

VII SUMMARY AND RECOMMENDATIONS 120

Introduction 120
Overview of Work Accomplished 120
Significance of Research Outcomes 121

Summary of Methodology Formulated 121
Productivity Methodology 123
Effort Estimation Methodology 124

Summary of Productivity Analysis 126
Summary of Effort Estimation Analysis 129
Management Considerations 131

Data Collection Forms 131
Data Submission Procedures 132
Controlling the Process133
Personnel Selection Considerations 134

Future Research Possibilities 134

viii

Table of Contents (Continued)

CHAPTER Page

REFERENCES................................137

GLOSSARY...............................143

APPENDIX

A DETAILS OF CONVERSION EFFORT/COST ESTIMATION MODELS 149

B DATA ENCODING AND PRELIMINARY ANALYSIS.............176

C PROGRAMMER RESUME FILE......................199

D PROGRAM INFORMATION FI1* 209

VITA...................................220

ix

LIST OF TABLES

TABLE Page

1 Classification of Conversion Efforts 12

2 Comparison of Phases of Software Conversion 18

3 Lines of Code Per Hour(LOCPERHR) Averages for
Categorical Variables 71

4 Initial Version of Productivity(LOCPERHR) Model 78

5 Final Version of LOCPERHR Model 81

6 Final HRPERHLO Alternate Productivity Model. 85

7 Final LOGLOCPH Alternate Productivity Model 87

8 Final LOCPERHR Model With Organization 89

9 Phase IV System Level Effort Data 95

10 Summary of Conversion Effort Estimation Models 107

11 Validation/Accuracy Measures of Basic Models... 107

12 Organizational Impact Effort Model 118

13 Task Percentages for FCSC Complexity Classes 152

14 Hahn and Stone Conversion Production Mean Rates 165

15 Hahn and Stone Documentation Status Categories 165

16 Hahn and Stone Modification Level Ratings 166

17 College Education Categories177

18 Academic Majors and Minors178

19 Formal Training Categories179

20 Programmer Experience Categories 179

21 Programming Language of Programs to Convert 180

x

List of Tables (Continued)

TABLE Page

22 Conversion Experience Categories. 181

23 Programmer Resume Data Record 182

24 Program Information Data Record183

25 Types of Phase IV Programmers 185

26 College Education of Phase IV Programmers 185

27 Summary of Majors of Phase IV Programmers 186

28 Formal Training Profile of Phase IV Programmers. 186

29 Conversion Experience of Phase IV Programmers 187

30 Regrouping College Education, Major and Conversion
Categories189

31 Summary of Chi-Square Tests190

32 Partial Correlation Matrix and Factor Analysis 191

33 Phase IV Programmers Experience Summary192

34 Phase IV Programs By Type and Number of Programmers. . .. 193

35 Program Difficulty Counts & Totals194

36 Conversion Activities: Times & Percentages 194

37 Productivity and Other Summary Measures195

xi

LIST OF FIGURES

FIGURE Page

1 AFASPO Phase IV Programmer Resume Form 61

2 AFASPO Phase IV Program Information Form 62

3 Plots of Estimates of Basic Models for a Small System . 109

4 Plot of Refined Models and Regression Developed Models 116

5 LOCPERHR versus Knowledge(KCA) of programmer for single
programmer type programs 197

6 LOCPERHR versus Program Difficulty(SUMDIF) for single
programmer type programs 198

CHAPTER I

INTRODUCTION

Software conversion is becoming increasingly significant as the

inventory of programs increases and as the life cycle of many of

these applications becomes longer. Although some work has been done

in the area of software conversion, it has received little research

attention since it has only recently become a more frequent and

costly occurrence. Additionally, little software conversion effort

data has been available outside the few vendor firms performing

conversions. In the field, conversion has not received the attention

it merits since it has traditionally been considered to be of "low

status".

This research developed a methodology for the analysis of

software conversion which investigates programmer productivity and

effort estimation. Two items specifically studied are the accuracy

of software conversion effort/cost estimation models and the

correlation between conversion programmer productivity and programmer

attributes. The procedures developed for the analysis were used in a

case study of conversion sample data available from the ongoing Air

Force Base Level Data Automation Program(officially short-titled

Phase IV) which involves the replacement of over 200 computer

hardware systems and the associated conversion of about 300 software

The journal used as a pattern for format and style was Computing
Surveys.

p=NMWJO PAGE BLAW 2 FILMD
/M

2

systems by over 20 different Air Force organizations. Environment-

specific effort estimation and productivity models resulted from the

analysis. The overall results are primarily applicable to one type

of conversion but provide guidance and a foundation for work with all

types.

Description of the Conversion Problem

The U.S. General Accounting Office(GAO) has found that the length of

the life cycle of computer hardware systems within the federal

government is about seven years[General Accounting Office, 1977].

This infers that every federal organization using a computer may

sooner or later have to convert its application software. By

increasing the capacity of the existing hardware configuration, an

organization may find it possible to postpone a conversion. However,

sooner or later, every organization will have to replace its computer

system with a new machine for technical and/or political reasons.

Wolberg sees the need for conversion as being dependent on the

failure of a particular computer environment to function as required

or because a vendor has discontinued support for a specific piece of

software or hardware[Wolberg, 1983]. Changes become necessary for

one or more of the following incentives: increased capacity,

increased reliability, improved performance or reduced cost.

Whatever the reason for the change, an analysis of the costs and

available options and impacts must always take place. Some changes,

such as the acquisition of additional disk drives, rarely affect

lia i ii ii fI J

3

software. However, the replacement of one computer with another will

typically require some degree of changes to the software especially

if the architecture changes.

The GAO reported in 1977 that the federal government was

spending more than $450 million per year to convert programs[General

Accounting Office, 1977]. Though conversions may be more frequent

within the government, Wolberg stated in 1983, that the worldwide

annual cost of conversion was estimated at several billion dollars

and that surveys estimated the cost of conversion to be as high as

10% of the computing budget[Wolberg, 1983]. Boehm stated that the

annual cost of software in the U.S. in 1980 was approximately 40

billion dollars or about 2% of the Gross National Product(GNP)[Boehm,

1981]. He further added that these costs are expected to grow to

8.5% of the GNP by 1985 and 13.5% by 1990. By analyzing these cost

statements, one can conclude that a current estimate of annual

software conversion costs in the U.S. may be about $4 billion.

The GAO report includes the results and analysis of a GAO survey

which concluded that about 24% of software conversion costs could be

eliminated by improving the conversion process as well as the quality

of new software development which will make future conversions

easier. As the cost of software increases so does the importance of

producing cost effective software through development and conversion.

The challenge to software professionals is quite clear[Fernandez,

1982]. Software conversion research efforts are essential to the

industry.

4

Boehm emphasized that poor management can increase software

costs more rapidly than any other factor[Boehm, 1981]. This

statement was made concerning new software development, but it is

also applicable to conversions. Oliver pointed out that most of the

ignorance regarding conversion has to do with the process

itself[Oliver, 1978]. All too often, organizations mistakenly liken

conversion to development, fail to plan and prepare properly, and

invariably allocate resources parsimoniously to the converison

effort. Planning for the software conversion required in a hardware

replacement is usually done too late to avoid multiplying the

problems of a conversion.

Software Conversion Fundamentals

The need or desire to move software from one environment to another

is fundamental in the usage of computers. This move typically occurs

during the maintenance phase of an application system's life cycle

and it could be triggered by a new operating system, a new hardware

configuration, or language and compiler changes. Wolberg suggested

three basic alternatives that may be considered when such a move is

contemplated[Wolberg, 1983]:

1. Emulation -- A process by which the new environment is made to

directly execute software written for the original

environment.

2. Conversion -- A process in which changes are made to the

software so that the original system will execute properly in

the new environment.

5

3. Replacement -- Alternative software is either developed or

acquired for the new environment. This is the most radical

choice.

D. Schneider suggested a fourth alternative that could be

considered[Schneider, 1978]:

4. Termination -- Considering termination forces the examination

of the essentiality of the system.

If emulation is possible, no software changes are necessary.

However, emulation is not a feasible alternative because it is often

costlier than imagined and is least effective in terms of utilizing

the new hardware or software. It is only an interim solution which

does little but delay the eventual necessary conversion[Oliver,

1976]. If the replacement option is selected, the original software

is typically discarded in its entirety[Wolberg, 1983]. Replacement

may be accomplished by purchasing or leasing a standard software

package or by a new development effort. Since the termination of a

system is highly unlikely and since emulation and replacement are

typically inappropriate, conversion is the most frequently chosen

alternative.

Although the GAO found the typical life cycle of computer

hardware systems within the government to be seven years(architecture

life cycles are longer), many existing programs in federal agencies

were designed for, and are operating on, computer systems that are

fifteen years old and older, before on-line systems, random access

and telecommunications were generally available(Collica et al.,

6

1980]. Many of these programs use techniques common to second

generation computers, such as tape-oriented batch systems,

programming in assembly language or in very early versions of COBOL,

FORTRAN or even in AUTOCODER.

In many cases, these programs perform vital functions, such as

payments to retirees or agency personnel. Converting these programs

is difficult, costly and time consuming so conversion is justified

only if the hardware or software has become obsolete and is no longer

supported by its manufacturer or if the system has reached

saturation, i.e., there are not enough hours in a day to run all the

required programs[Collica et al., 19801.

Once the decision has been made to convert software, there are

basically three approaches or techniques which can be used in the

process[Wolberg, 1983; Collica et al., 1980; Oliver, 19781:

recoding, reprogramming and redesign. These techniques are discussed

in the next chapter.

Current Research Interest in Conversion

The Department of Defense Software Technology for Adaptable, Reliable

Systems(STARS) Program Strategy expressed the concern of the computer

community for more aggressive research in all areas of software

engineering[Department of Defense, 1983]. Two items of interest

which were defined as functional task areas are measurements and

human engineering. This thesis research makes a valuable impact on

this new initiative since software conversion measurements, including

programmer productivity, are investigated.

7

Collica et al. listed several critical areas in need of

immediate attention by researchers[Collica et al., 1980). Two of

these critical areas which were studied in this research are:

1. Conversion cost estimation guidance is needed.

2. The different types of people who are required for various

types of conversions need to be identified.

Dunham and Kruesi emphasized the environmental specificity of

resource estimating as an important issue(Dunham and Kruesi, 1983].

They pointed out that the accuracy of models typically vary

considerably across different organizational environments. As one

gains greater insight intoo the various environments by specific

studies, the subject of effort estimation will become clearer.

Chrysler proposed programming research environments that require

investigations such as he conducted to determine significant

characteristics affecting development time[Chrysler, 19783. He

proposed no conversion environments, so this research adds a new

dimension to Chrysler's suggestions for research.

Since there is currently no pool of professionals experienced in

software conversion except for the fev, vendor firms that specialize

in this area, an agency called the Federal Conversion Support

Center(FCSC) was established in 1980 to assist federal organizations

in planning and performing software conversions. Wolberg remarked

that general software management planning procedures suggest the

making of estimates of effort, resource requirements and project

duration while considering the level of performance and productivity

8

of personnel[Wolberg, 19831. There is a definite lack of research in

the area of software conversion that addresses these management

concerns. This research is just one of the many efforts required to

fill the void that exists.

Air Force Base Level Data Automation Program

A current Air Force computer replacement effort, the Base Level Data

Automation Program(officially titled Phase IV), is replacing over 225

obsolete base level computer configurations with about 150 new

computers. It appears that the short title of Phase IV was chosen to

indicate the fourth contractural agreement for Air Forae base level

support. All existing base level software systems are being

converted to the new hardware. Several Air Force organizations are

converting their own systems totaling about 3 million lines of code

while a contractor is converting common systems which total about

half that amount.

The Air Force Automated Systems Project Office(AFASPO) has

primary responsibility for managing the Phase IV Program including

the establishment of reporting requirements applicable to all

participants. Since the inception of the program, the AFASPO has

been receiving monthly status reports from all organizations involved

in the conversion. In June 1983, the AFASPO requested that all

organizations submit programmer resumes for all programmers

participating in the conversion and basic program description or

information forms for each program converted[AFASPO, 1983]. A

9

fundamental basis for this data collection was the Air Force's

acknowledgement of software conversion as a significant area

requiring increased attention.

The AFASPO plans to provide the raw data to the Rome Air

Development Center(RADC) or some other research agency for its

analysis upon completion of the entire conversion effort. The

preliminary set of data was made available for use in this thesis

research in order to perform an initial exploratory analysis. When

the conversion effort is completed in late 1985, the total data can

be analyzed using the procedures developed by this research.

Overview of Research and Chapter Summary

During the preparatory stages of this research, an extensive

literature review was conducted. Chapter 2 presents an overview of

significant literature related to the general area of software

conversion. This chapter provides the framework for all that is to

follow. The two major items of interest, programmer productivity and

effort estimation, are discussed and reviewed in Chapter 3. Some of

the literature in this chapter refers to software development since

there are items of interest that overlap with software conversion.

An integral part of this research is the Air Force Phase IV

software conversion effort. Chapter 4 provides the basic details of

the Phase IV program which are essential for a complete understanding

of the data collected.

10

The preliminary stage of the research involved a review of the

data collection forms and the development of an encoding scheme for

efficient data entry and manipulation. This stage included a basic

and separate analysis of the resulting programmer resume file and the

program information file. The first major step of the research

required the merging of the program information file with the

programmer attribute file to form composite records for analysis.

The objective was to study the impact of programmer attributes on

productivity. Chapter 5 presents the analysis conducted and the

results obtained from investigating the sample data.

The last step of the research involved an evaluation of the

accuracy of notable conversion effort/cost estimation models. Phase

IV system level effort data was obtained to conduct this study and to

permit the development of an effort estimation model specific to the

environment. Chapter 6 details this work and the modifications of

existing models performed in an attempt to improve their accuracy.

Finally, Chapter 7 presents a summary of the methodology

formulated for use in this research plus a summary of the case study

findings and conclusions. A discussion of future research

possibilities is also included.

1i

CHAPTER II

PANORAMIC VIEW OF SOFTWARE CONVERSION

The following definition of software conversion has been used in this

research:

Software conversion is a process of transporting a program or

system solely for the purpose of enabling such a program or

system to execute correctly in an environment different from

the one for which originally developed.

This chapter reviews the literature in the general area of software

conversion while the following chapter presents the related

cost/effort estimation and productivity literature.

Conversion Types and Techniques

A summary of the possible types of conversions and an assessment of

the relative difficulty of the effort involved is presented in Table

1. Classifying conversions by source and target environments gives

an indication of their wide variance as well as the level of

difficulty which should be anticipated in different types of

conversions. Within each environment, one can specify the same or

different computers and/or languages. A and B stand for different

computer hardware, Ll and L2 represent .different languages and VX,

VY, and VZ are different versions of a language for possibly

different operating systems.

12

Table 1. Classification of Conversion Efforts

Class Source Target Difficulty
Computer Lang. Ver. Computer Lang. Ver.

1 A Li VX B Li VX Average
2 A Li VX B Li VY Difficult
3 A Li VX B L2 VZ Most Difficult
4 A Li VX A Li VY Easy
5 A Li VX A L2 VZ Highly Difficult

Adapted from [Wolberg, 1983].

The conversion of existing software into another language

involves a change of implementation language. These are shown in

classes 3 and 5 of Table 1 where Li and L2 are different. Notice

that these two classes are of the greatest relative difficulty.

Class 2 indicates a conversion from one machine to another using a

new version of the existing language. This class is just below the

level of difficulty of classes 3 and 5. Most of the software being

converted in the Air Force Phase IV project is in class 2 while some

is in class 3.

When a decision is made to convert the original software, there

are basically four strategies, according to Wolberg's definitions,

for completing the task[Wolberg, 1983]:

1. Translation -- The primarily automatic conversion of software.

2. Recoding -- The manual conversion of software.

3. Reprogramming -- The conversion process which includes some

system redesign but no significant functional redesign.

13

4. Redesign -- The conversion option which includes a functional

redesign of the system thus implying a level of software

development.

Wolberg further states that translation and recoding use the

original software as the specification for the new system.

Reprogramming uses the original software plus the functional

specifications to develop the new software. This new software will

differ, to a varying degree, from the original software. Redesign is

more expensive than reprogramming and will produce software that

bears little resemblance to the original. He complicates the subject

by defining the term "conversion" to mean a process with an important

degree of translation and/or recoding. Thus, he makes a distinction

between systems that are converted and those that are reprogrammed or

redesigned. Oliver and Collica et al. present similar breakdowns and

descriptions of conversion techniques; however, there are some

differences that cause confusion when comparing all the

descriptions[Oliver, 1978; Collica et al., 1980].

To clarify the techniques, there is a need to prov~de the basic

list of software development documents upon which the software

conversion is based. The document list, providing the framework for

the conversion, is assumed to include:

1. functional specifications,

2. system design specifications, and

3. program descriptions(most importantly, the source code).

14

Each level of documentation obviously provides greater detail and

more structure.

With this framework in mind, one can then differentiate between

the conversion techniques by specifying the representation or

documentation of the existing software used in the conversion. For

this research, recoding is assumed to include a combination of

automatic translation and manual visual inspection of the code, while

reprogramming and redesign assume their normal definitions. In

recoding, the existing source code is used as the basis while in

reprogramming the system design specification serves as the basis of

the conversion. In redesign, the functional specifications of the

system are used in the conversion so that the user's viewpoint of the

function of the software remains unchanged. A software conversion

effort may involve only one of the recode, reprogram and redesign

approaches or it may follow any combination of the three[Fernandez

and Sheppard, 1984].

There are tradeoffs associated with these three approaches.

Recoding is the easiest to do since each line of existing code is

translated to an equivalent line(s) of code in the new environment.

This translation can often be at least partially automated by writing

a program or using a vendor's product to perform the line-by-line

conversions.

Redesign is the most difficult approach to conversion since a

new design specification is required before the programming can be

done. Different algorithms, logic and program structures may be

15

used. Rarely can this type of conversion utilize automatic

conversion aids. However, redesign does allow the maximum

improvement in the system in terms of taking advantage of features of

the new language or environment as well as any recent developments in

algorithms.

Reprogramming ranks in difficulty between recoding and redesign.

It involves an analysis of the system being converted based on the

existing design documents. The same functions and algorithms remain

but some new code with different logic may be included. It is

significant that all three techniques provide the user with

functionally equivalent software. This is the essence of the

conversion process.

Management must take great care in deciding which technique(s)

should be used for the conversion project. Collica et al. suggest

the following criteria for this decision[Collica et al., 1980].

Recoding may be selected when the source and target languages are

similar and the hardware/software capabilities of the source and

target computers are comparable. Reprogramming is applicable when

the source and target languages are dissimilar as when converting

from a low level to a high level language. Redesign is the correct

choice when the source program is many generations old, is poorly

structured and documented and the design is out of date.

A type of software conversion that provides a unique set of

difficulties is one that involves a data base management system(DBMS)

environment. A conversion that involves COBOL programs utilizing a

16

DBMS can be as much as ten times more costly as the same programs in

a file environment[Collica et al., 1980]. General solutions to DBMS

conversion problems are still in the research stages primarily

because there are many DBMS's in the marketplace but little

commonality exists among them.

Fry et al. discussed the conversion of data base systems,

detailing the problems involved and the automated tools undergoing

research that may be useful for converting data bases and related

programs[Fry et al., 1978]. These conversions are difficult because

of the proliferation of data models and levels and styles of DBMS

interfaces, internal data representations, and hardware

architectures. Little work has been done in the area of DBMS

applications because of their complexity. Shneiderman and Thomas

described an automatic data base system conversion facility which

provides one approach to coping with the data base conversion

problems[Shneiderman and Thomas, 1982].

Oliver discussed several aspects of conversion which may involve

technical difficulties no matter what type of conversion is

involved[Oliver, 1978]:

1. Problems arise when the source machine sets special indicators

or switches, such as, overflow, invalid data, etc., and the

target machine either does not or does so under slightly

different conditions.

2. The format and the amount of information that is specified to

define a file varies among languages.

17

3. There is no "standard" format for the recording of variable

length records on tape or disk.

4. File organization becomes a significant consideration on any

nonsequential file since the processing of such files may

vary by language and machine.

5. Data may be represented in different ways on the source and

target machines.

6. Differences created by individual organizational programming

practices can create significant problems.

Conversion Process

As is the case with new software development, there is no clear

consensus on the definition of the steps or phases of a software

conversion process. Table 2 presents three different views of the

phases of software conversion. The three stages or phases of the

conversion process as defined for Phase IV are used in this research.

The first stage, the pre-conversion stage, includes a preliminary

study, planning and data preparation. The conversion or second stage

involves the actual conversion of the software and applicable

testing. The third or post-conversion stage includes updating

documentation, implementation, and the application of critical

changes.

The preliminary study conducted during the pre-conversion stage

is a very important step of the conversion process. It includes

investigating all possible alternatives to insure that conversion is

18

Table 2. Comparison of Phases of Software Conversion

Collica et al.* Wolberg* Air Force Phase IV*

Planning Planning Pre-Conversion
Data Preparation Data Preparation Conversion
Translation Conversion Post-Conversion
Unit Testing Testing
System Testing Implementation
Parallel Testing

*[Collica et al., 1980; Wolberg, 1983; Air Force Automated Systems

Project Office, 1982b].

the best option available to obtain the required computing

capability. The planning function will be discussed in a subsequent

section of this chapter. The data preparation step is significant

since there is typically a large volume of data that enters the

conversion process. The preparation of test files that will execute

a high percentage of the code is an important aspect of the pre-

conversion stage. The FCSC provides some forms that can assist with

this phase[Federal Conversion Support Center, 1982b].

The conversion stage involves using one or more of the

techniques discussed earlier and testing the results. Substantial

effort is required to correct logic errors that may have existed in

the original source software or that were introduced by the

conversion process. Generally, conversion problems are discovered

when test data is passed through the software. Problems may continue

to appear as additional integration occurs in system testing.

I

19

The post-conversion stage is the "bread and butter" stage for

future conversions and maintenance of converted software. All the

documentation is changed to reflect the new hardware and/or software

environment. Even though few changes may be required in some cases,

their significance can not be minimized. Operations in the new

environment can be implemented in parallel with the old environment

with changes being made to the software only after cutover of an

application is achieved.

Lynn et al. discussed some management policies used to assist

with the successful completion of a conversion effort[Lynn et al.,

1979]. The overall management policy for a system which was

undergoing conversion was to restrain new development as much as

possible until the conversion was finished. Only the most essential

changes to correct critical errors were permitted for programs

undergoing conversions.

Conversion Planning

Experience in software conversion projects suggests that adequate

planning and preparation is the key to success[Fernandez and

Sheppard, 1984]. There are usually several steps included in the

planning function. Wolberg's planning steps can be described

as[Wolberg, 1983]:

1. Requirements analysis -- The first step is to prepare an

inventory of the programs and files to be converted. The

inventory should be updated as details, such as number of

20

statements in various languages, total number and types of

records, etc., are determined.

2. Conversion guide preparation -- The guide identifies the

differences between the source and target environments and

covers all aspects of the conversion, including the

conversion of programs, data, and so on.

3. Conversion methods determination -- Based on the previous two

steps, the aspects of the conversion which will be performed

manually and those which will be performed using conversion

tools and aids are determined.

4. Estimation of required resources*-- Estimation techniques are

selected and applied. Wolberg specifically mentions that

estimating productivity is a crucial step in the planning of

a conversion project since it directly impacts the effort

estimation.

5. Scheduling -- A schedule based on an estimate of required

resources is prepared. The scheduling takes into

consideration such obvious factors as hardware delivery

dates.

If the conversion effort is to include much reprogramming and

redesign, a functional analysis of existing systems could identify

frequently used functions that might be developed into reusable

modules[Fernandez and Sheppard, 1984]. The relative inefficiency of

the converted code compared to the original software must be

considered in the planning function. For applications where

21

degradation in space and/or time requirements cannot be tolerated,

further attention from the programming staff will be required.

Appropriate allowances for this effort should be included in planning

for the conversion.

There are unique requirements that must be considered during the

planning function. The training of programmers to write in a new

language of the target environment must be planned for well in

advance because of conflicts that may arise in current work schedules

and schedules of available training classes. If the new language is

Ada* then Ada training must even take programmers into an advanced

"language mind-set" to produce proficient programmers[Fernandez ad

Sheppard, 1984].

An FCSC survey revealed that a major complaint echoed by all

interview participants was that the time allowed was insufficient to

adequately plan the conversion effort[Federal Conversion Support

Center, 1983b]. A complex conversion may require as much as 40% of

the effort devoted to planning, quality assurance and configuration

management. It is important to realize that as unexpected variables

become evident during the conversion, the plans will require

revision. Management quite often underestimated the cost of

conversion and the effort involved and therefore developed unworkable

and unrealistic conversion plans. Better estimating techniques are

needed to assist managers realize the scope of the effort and thus do

better planning. The FCSC has published other documents specifically

* Ada is a registered trademark of the Department of Defense.

22

designed to assist the conversion planner in the preparation of plans

and work packages[Federal Conversion Support Center, 1982b; 1983a].

Management Concerns

Wolberg stated that an important, but not well known, fact about

conversions is that they tend to have more problems with management

than technical aspects. One problem is management of the data

involved in the conversion process. A conversion contractor, Rand

Information Systems(RIS), has found that taking a single program from

the source environment to the target environment may require, on the

average, five or six data sets which :.clude the source material, a

couple of input files, a couple of output files and perhaps the

master file[Wolberg, 1983]. This means that to convert 1000

programs, 6000 data sets may have to be managed. Critical to an

organization's ability to manage the conversion is the control of

materials, such as, record definitions, record layouts, system

flowcharts and documentation on how the program is used.

Oliver related that there is a significant difference in

emphasis between the management of a conversion project and the

management of a development project. A conversion project requires,

and allows for, more discipline and stricter adherence to procedures.

A conversion may very well be an assembly-line type of operation,

where the total effort is broken down into well-defined tasks which

are more dependent upon experience and strict adherence to procedures

than on innovation and ingenuity for their successful completion.

- U

23

Oliver also pointed out that many of the ground rules for software

production do not apply to conversions. An example is that manpower

and time are not generally interchangeable in a software development

project, but within certain bounds, they are in a conversion

project[Oliver, 1979b].

Boehm observed that poor management can increase software costs

more rapidly than any other factor[Boehm, 1981). He made this

statement primarily for software development projects but from

Oliver's statements above one can conclude that this is even more

true for software conversion projects.

Collica et al. were emphatic in their statement that managers

are often threatened by conversions because they have neither planned

nor budgeted for conversion[Collica et al., 1980]. Managers are

eventually forced to convert in a timely manner with as little

disruption to the ongoing system as possible. Managers must also

deal with programmers who view conversion with equal disdain.

Conversion programmers are called on to work with programs they

neither designed nor coded on a machine with which they are not

familiar to perform functions that are somewhat mechanical and not as

intellectually stimulating as new coding or design. Managers must be

prepared for this "people problem" challenge to avoid multiplying the

difficulties involved. Getting programmers involved in the early

stages of conversion, especially in the study and selection of

conversion techniques, can make them feel more a part of the total

project.

24

Chapin discussed the fact that management decisions play a

critical role in determining the level of staff productivity in the

maintenance of computer programs and systems[Chapin, 1981].

Historically, the builders of the programs and systems have acted as

though someone else - the user and the maintainer - were going to pay

the costs of use and maintenance. Chapin's observations apply

completely to conversions, requiring managers to be concerned with

the future impacts of current decisions.

The GAO suggested ways to improve software conversions and

reduce their cost[General Accounting Office, 1977]. One suggestion

was greater emphasis on quality in the original development of

software and documentation. The possible greater cost of software

development can be more than offset by easier and less costly future

conversions. More widespread use of automated programmer

productivity aids can also ease software conversion as well as

software development problems. Conversion cost can also be reduced

by management recognizing that most software will eventually be

converted to new equipment and then taking steps to avoid the use of

vendor-unique features. Because of the general lack of conversion

expertise, Oliver stated that it would generally be wise for

organizations to avail themselves of contractor support for

conversion because of their extensive conversion experience[Oliver,

1978]. However, great care must be taken in pursuing the contracting

of the conversion process.

25

The Contracting Option

A National Bureau of Standards(NBS) study pointed out that it is

unlikely that many of the programming staff will have participated in

a previous conversion at the same agency since the average time

between computer replacement in federal agencies was found to be

seven years, which is about double the tenure of a programmer/analyst

at a given installation[Skall, 1982]. Many people on the conversion

staff may also lack intimate knowledge of the software to be

converted due to personnel turnover.

Much of the anxiety and uncertainty surrounding a conversion may

be alleviated by contracting an experienced vendor. Contracting may

be the only option available since hiring freezes and personnel

ceilings prohibit many agencies from acquiring additional personnel

for a conversion project.

The contracting option will not solve all of a manager's

problems. Contracting may multiply the complexity of the entire

effort so it must be approached with caution. The FCSC provides a

document to assist with the contracting option[Federal Conversion

Support Center, 1982b].

Conversion Tools

As in a program development effort, the size of the project

determines the significance of using conversion aids. The workhorse

of the conversion project is the automatic converter. There are

numerous products on the market to convert one language to another

26

language and/or from one computer to another. Suppliers of suitable

tools for the conversion effort may be found in the current

literature. Datapro presents extensive conversion products in the

Programming Aids section of their annually updated reports[Datapro,

1983]. The FCSC also published a list of software available with

detailed information regarding function, applicable hardware and

operating systems, source and target details, plus references to

additional information[Federal Conversion Support Center, 1982c].

All the data in the report was verified by the conversion product

vendors prior to its publication. The FCSC intends for the survey to

be one of the primary sources of information on conversion tools

available to federal agencies. This survey is upgraded annually by

the FCSC.

The limitations of software conversion tools must be realized.

Collica et al. discussed the problems of the semantic definitions of

source code[Collica et al., 1980]. They related that automated tools

typically solve the easy problems which are encountered in

conversion, such as the differences in syntax between two languages.

However, the semantics of a block of code can sometimes be determined

only by interfacing directly with the author(s) of the code.

Automated translators usually will not translate the correct

semantics of a block of code if the semantics cannot be identified by

merely scanning the code.

Collica et al. provided an example of problem code for a

translator[Collica et al., 1980]. The following block of FORTRAN

27

code written for a CDC 6700 computer which stores 10 characters per

word is to be translated into IBM FORTRAN to run on an IBM 360/370:

COMMON A(4), B(4)
DO 100 I=1,4
B(I)=A(I)

100 CONTINUE

Since these lines of code are syntactically correct IBM FORTRAN

statements, a translator would probably not modify them. However,

the arrays A and B may have been used to store a 40 character string

on the CDC machine with 10 characters per word. Since the IBM

machine stores 4 characters per word, the code should be modified to:

COMMON A(10), B(10)
DO 100 I=1,10
B(I)=A(I)

100 CONTINUE

A translator would probably not be able to "know" if array dimensions

and/or loop counters for a block of code were set up to handle

character data. Tools are not an end in themselves, but rather one

part of a complex management strategy required for the conversion

process.

28

CHAPTER III

CONVERSION EFFORT ESTIMATION AND PRODUCTIVITY

Estimation and productivity involve measures of one type or another

and the importance of studying them is made clear from Boehm's quote

of Lord Kelvin[Boehm, 1981):

When you can measure what you are speaking about and express it
in numbers, you know something about it; but when you cannot
measure it, when you cannot express it in numbers, your
knowledge is of a meager and unsatisfactory kind: it may be the
beginning of knowledge, but you have scarcely, in your
thoughts, advanced to the stage of science.

Mills stated that there are two parts to an estimate: making a
E

good estimate and making the estimate good[Mills, 1980]. Effective

management and software engineering techniques must surround both

parts of Mills' estimate. In addition, part one, making a good

estimate, is directly concerned with the use of cost estimation

models. Part two of Mills' definition includes a concern for

productivity.

There exists a direct relationship between cost/effort

estimation and productivity. High productivity implies a faster

conversion and thus low effort measurement while low productivity

implies a slower conversion and high effort measurement. This thesis

research separated the two measures to analyze each individually and

then synthesized the results. This chapter divides the literature

review into two sections, one for effort estimation and the other for

productivity.

29

Little research with software conversion effort estimation and

software conversion productivity has been reported in the literature.

Therefore, effort estimation and productivity research for new

software development was included when it contributed in some way to

the study of the parallel topics in software conversion.

Cost/Effort Estimation

The definition of software engineering economics provides a framework

for the study of conversion effort/cost estimation[Fernandez, 1982]:

The application of mathematical and managerial techniques to

the design and development of software products to derive good

cost and schedule estimates which compare favorably with the

actuals.

To make this definition more applicable, one can change the term

"development" to "development or conversion." Good effort/cost

estimates are critically important issues of software conversion.

Estimation is typically preceeded by the term "cost"; however,

authors are often quick to point out that they are really discussing

"effort" estimation and that an "effort" estimate becomes a "cost"

estimate by multiplying it times the average manpower cost of the

organization. The ensuing discussion will use the terms "cost" and

"effort" interchangeably with "effort" being the preferred term. If

costs are being specifically addressed then "cost estimation" is the

more appropriate term.

30

Software development models typically yield estimates that are

very different from those of conversion effort models. Wolberg

presented a comparison of a conversion effort prediction model and

two software development models revealing that conversions require

much less time than development projects[Wolberg, 1981]. This

discussion is primarily oriented to recoding since Wolberg considers

redesign projects to be similar to new development projects and

reprogramming projects to require approximately half the effort of

new development[Wolberg, 1983]. A conversion study may review

software development estimation models to search for directions for

analysis but not to select an applicable model.

Basic Estimating Concepts

Effort estimating techniques can be divided into three categories or

methods[Federal Conversion Support Center, 1981a]:

1. Experience Method.

2. Task Analysis.

3. Parametric.

The experience method is primarily based on expert judgement while

task analysis pertains to a method which utilizes a handbook approach

to estimating. The parametric method refers to the use of single or

multiple variable equations in estimation. The models studied and

developed in this research are of the parametric type.

Dunham and Kruesi divide effort estimating models into two basic

categories: total cost and cost distribution[Dunham and Kruesi,

31

1983]. Total cost models are simply those of parametric type. Cost

distribution models differ with total cost models in that they focus

on resource expenditures over time. Putnam's model is an example of

such a type as it predicts time-dependent parameters[Putnam, 1980].

With conversion times a great deal shorter than those for software

development, total cost or parametric models are more appropriate for

this research.

When developing a parametric model, it is important to recognize

the influence of the organizational environment[DeMarco, 1982;

Wolberg, 1983]. Published models typically only provide an initial

"ball park" estimate that must be adjusted for each

organization[Wolberg, 1983]. The organizational sensitivity of

estimation may be lessened by developing models based on

organizational data.

Parametric models generally use lines of code as one of the

major parameters, if not the only parameter. DeMarco related that

the most serious objection to using lines of code in a model is that

one cannot count lines of code at the beginning of a development

project; the count has to be estimated[DeMarco, 1982]. This

objection does not apply to conversion estimation models since a

count of lines of code is always available at the start of the

project.

Oliver, a proponent of the task analysis method, criticized

parametric models as worse than useless[Oliver, 1978]. It is obvious

that Oliver has had some bad experiences which influenced his

32

comments. This thesis research studied some effort estimation

parametric models which were found to be quite adequate for the Phase

IV environment.

Conversion Effort/Cost Estimation Models

The FCSC conducted an extensive study of conversion cost/effort

estimating techniques and models[Federal Conversion Support Center,

1981a]. All were found to be inadequate for one reason or another.

Therefore, the FCSC developed a parametric model with a foundation of

a work breakdown structure incorporating some of the better elements

of existing models. The initial version of the FCSC model was

formally called FCSC Hybrid Conversion Cost Model. After some

experience with the model, another version was developed and

documented in a subsequent report[Federal Conversion Support Center,

1982a].

The FCSC model provides estimating methods, formulas or

guidelines for the following conversion tasks:

1. Conversion planning and analysis.

2. Work package identification and preparation.

3. Test data generation.

4. Application program and system software conversion.

5. Data file and data base conversion.

6. Operation control language(OCL) conversion.

7. System testing.

8. Redocumentation.

9. Acceptance testing.

33

10. Conversion management and administrative overhead and/or
contract administration and support.

11. Miscellaneous resource estimating and costing.

The details of the estimation procedures for each of the tasks are

included in Appendix A. Though the entire model is presented here,

only those tasks that parallel those used in the Air Force Phase IV

program will actually be included in this research. Basically, the

tasks of primary interest are those numbered 3 through 9 above.

The Hahn and Stone model appears to be the earliest attempt to

develop a conversion parametric effort/cost estimation method[Hahn

and Stone, 1970]. The model defines three cost categories of

interest:

1. Cost of transferring programs.

2. Cost of transferring data.

3. Other costs.

The major portion of the model deals with the cost of transferring

programs with the main emphasis being placed on the costs of manual

conversion or recoding. The details of the model are provided in

Appendix A.

Grim, Epler and Andrus studied Air Force conversion cost

estimation and found no comprehensive method available[Grim, Epler

and Andrus, 1978]. They developed a model which addressed the

following costs:

1. Application program conversion.

2. Data conversion.

3. Operating procedures conversion.

4. Other costs.

34

The cost of converting application programs was sube .ded into costs

for analysis, programming, manpower and machine use. The programming

cost estimation method received the most attention. The details of

the Grim, Epler and Andrus method are included in Appendix A.

The AFASPO suggested a slightly modified version of the Hahn and

Stone model for use in the Phase IV program[Air Force Automated

Systems Project Office, 1982a]. Only the software conversion cost

estimation guidelines were included. Also, the details of the model,

found in Appendix A, reveal that only COBOL to COBOL conversions are

addressed since the majority of Phase IV conversions are of this

type.

Wolberg analyzed nine Rand Information Systems(RIS) conversion

projects and developed a regression model for estimating effort based

on lines of code[Wolberg, 1983]. Though not stated by Wolberg, the

model was actually based on only the seven projects which were high

level to high level language conversions. This became evident when

the RIS data was subjected to regression analysis to determine the

R 2(coefficient of determination), which was approximately 0.61. In

addition to a recoding estimation model, Wolberg also suggested

models for reprogramming and redesign. It should be noted that the

RIS data included total project times, from planning to

implementation. Details of Wolberg's models and methods are included

in Appendix A.

35

Development Models of Interest

Boehm developed some cost estimation models for new development

efforts which he extended for use in conversion projects[Boehm,

1981]. Boehm suggested using his models for conversion by applying

specific cost driver factors and considering conversion as an

instance of adaptation of existing software for a new application.

He recognized the limitations of this approach when he encouraged the

reader to review the work of the FCSC for cost estimation models.

Najberg was commissioned by the Air Force Electronics Systems

Division(ESD) to perform an analysis of the resource and schedule

estimates for the Air Force Phase IV Program(Najberg, 1981]. He

obtained estimates, mostly of expert judgement type, from the

organizations (MAJCOMs) to be involved in Phase IV. Using ESD's

Standard Parametric Software Cost Estimation Model(SPSCEM), Najberg

calculated conversion effort estimates and compared them to those

submitted by the MAJCOMs. The results showed that there were great

differences between the two estimates. The SPSCEM calculates

estimates using the average of four software development effort

estimation models. Najberg stated in a private interview that the

SPSCEM model is being completely revised since the results obtained

were not acceptable[Najberg, 1983].

Basili and Freburger also performed an analysis of 15 software

projects developed for NASA/Goddard Space Flight Center by Computer

Sciences Corporation[Basili and Freburger, 1981]. Though the

projects were all new development efforts, the concept of reused code

36

used in the study might have some applicability to conversion

efforts. One of the equations, derived from the data, used the

number of developed lines of code(DL) as the predictive variable for

man-months of development effort(E). DL is a derived quantity equal

to the number of new lines of code(total lines minus reused lines)

plus 20% of the reused lines(all line counts are in thousands):

DL = NL + 20%(L - NL)

where

NL = new LOC; that is, not reused code

L = total LOC

L-NL = reused code.

This predictor variable(DL) was used by Basili and Freburger to

derive an equation for effort estimation:

E = 1.48 * DL
0 .98

The research conducted by Chrysler was a unique study of

dev.>rment time as affected by processing characteristics of

programs and experience characteristics of

programmers[Chrysler,1978]. Chrysler developed a regression equation

with only five of the 60 variables hypothesized to have an impact.

The utility of the predictive equation is limited somewhat by the

details of the program that must be estimated for use of the

equation. The result of major interest is really the fact that a

researcher has studied the significance of both programmer and

program characteristics in estimation or prediction of programming

time.

37

Jeffery and Lawrence developed equations for predicting

programming time(coding and unit testing) based on the data from

three different organizations[Jeffery and Lawrence, 1979). The

independent variable used was procedure(COBOL) lines of code and the

equation coefficients were significantly different for all three

organizations.

Software Conversion Productivity

There are several studies in the literature which relate to

productivity though none of these is in the area of software

conversion. The general concepts, definitions, and measurements

involving productivity are applicable to software conversion;

therefore, significant work in this area is discussed.

Productivity Measurements

There is some debate in the literature over the selection of an

appropriate measure of program development or programmer

productivity. This is exemplified by Johnson's paper in which he

related that the measure of lines of code is the "only usable

measure" of development productivity[Johnson, 1977]. He also

exposited the concept that productivity is only productivity if it is

measurable. There are variances in how LOC are measured and reported

so understanding the underlying definitions is fundamental. Precise

definitions of programs, man-days and LOC are necessary to avoid

difficulties in reporting and comparing productivity.

38

Johnson used Brooks' categories of programs to explain the

inherent differences in the levels of complexity of programs under

development[Brooks, 1975]. It is important to define one's level of

program complexity when discussing productivity rates. A distinction

must be made between productive and nonproductive time. Also

requiring clarification is whether design time is included in

computing LOC rates. If these rates are based only on

programming/testing time, the result could be twice the rate that

would result if all phases of the project were included. The last

definition requiring clarification is that of LOC, since there are

various ways of counting source statements. LOC could be the total

of all source statements, comments and job control statements, COBOL

Procedure Division statements or various combinations.

Jones presented the unit of cost of programming as an alternate

measure of productivity(Jones, 1978]. He discussed two measures of

programming productivity: speed and cost. The units of measure of

programming speed he called work units since they related to the

speed at which a programmer works. The primary example of a work

unit is the typical measure of lines of code written per programmer-

month. Cost units are units of measure of programming cost and a

significant cost unit is that of programmer-months of effort per

thousand lines of code.

Jones related some problem areas in using lines of code per

programmer-month; e.g., sensitivity to line-counting variations,

ineffectiveness for noncoding tasks and attention focusing on the act

39

of coding of a program, which is a misdirection, since this is but a

small part of the total effort required. It appears to this

researcher that cost units will still be sensitive to line counting

variations and that the calculations of cost units for noncoding

tasks add a degree of confusion to the process. In addition, the use

of work units, as called by Jones, are still exceedingly popular even

in cases where reused code plays a great part.

Crossman presents another alternative to measuring programmer

productivity[Crossman, 1979]. He encountered numerous difficulties

in attempting to measure programming productivity especially because

of the many subjective assessments that must be made in the process.

It was decided to try to measure the number of functions within a

program, with function defined as a section of the program that

performs only one activity, conforms to the permitted logic

structures of structured programming including one entry and one exit

point and has about 5 to 50 source statements. It also appears that

the number of paragraph names in the program is a very good estimate

of the number of functions.

A problem with this entire effort is the variations in the

definitions of functions. Also, so much work has been done with LOC

that it may be useful to take the number of functions calculated and

derive a figure for LOC that could then be used as appropriate.

Further research with the concept of functions seems necessary.

40

Productivity Studies

The productivity measurement and estimation study of Walston and

Felix is one that is continually cited in the literature[Walston and

Felix, 1977]. They mention that their research was geared towards

measuring the overall productivity of projects and not that of

individual project members. The definition of LOC is the count of

source records input to a language processor including job control

language, data definitions, link edit language and comment lines.

Reused code is not included; however, no definition is provided for

reused code to determine exactly what is excluded. Effort is

measured in man-months required by the project, including management,

administration, analysis, operational support, documentation, design,

coding and testing.

The programming productivity measure used in the study was the

ratio of delivered source LOC to the total effort in man-months. A

set of 68 variables was selected and analyzed against the data base

to determine which variables were significantly related to

productivity and the result was that 29 variables, including

programmer experience, showed a high correlation with productivity.

Chrylser expanded the study of productivity by hypothesizing

fifteen program characteristics and five experience characteristics

of programmers as being associated with increases in programming

time[Chrysler, 1978]. The log1 0 of programming hours for sample

programs was regressed against the log 1 0 values of program

characteristics and the following program characteristics which were

found significant at the 0.05 level or less are:

I 41

* output fields and output records

* control breaks and totals

* input fields, files and records

* output files and report formats

* mathematical operations

* output fields without corresponding input fields

Again, the log1 0 of programming hours was regressed against the

log,0 of each programmer characteristic. Years of formal education

and age were also used in the regression. All these characteristics

were found to be significant at least at the .005 level:

* age in months

* total months of experience programming

* months of experience with business applications

* months of experience at this facility

* months of experience programming with COBOL compiler in use

at this facility

* months of experience programming with COBOL compilers

* years of formal education.

Chrysler's results indicated that each of the experience

variables showed a significant relationship with programming hours.

The age variable seemed to be a statistical repository for the

cumulative impact of all the experience variables since it exhibited

the strongest correlation with programming time probably because age

showed a strong relationship with each of the experience variables.

The formal education variable, though significant, is too general and

it should take into account the type of education or curriculum.

42

Chrysler then consolidated the program and programmer

characteristics, as discussed earlier, and produced a predictive

equation for development time using the stepwise regression program.

With only the following five variables in the equation, the multiple

correlation coefficient was 0.836:

* programmer experience at this facility

* number of input files

* number of control breaks and totals

* number of input edits, and

* number of input fields.

A parallel study, which dealt with programmer performance,

investigated program and programmer factors which were

significant[Schneider et al. 1981]. Two subpopulations of

programmers appeared from the sample data:

Novice: 54 computer science courses and <3.0 GPA

or 52 years programming experience

Expert: 7 computer science courses and ;3.5 GPA

or 5 years programming experience.

A measure of performance was selected and the best predictor of

the experts' performance was found to be the number of years of

programming experience. For novices, the best predictor model

included the number of computer science courses taken and computer

science grade point average. The performance differences found

between the two groups of programmers demonstrated that productivity

is not only dependent upon program complexity but also on the

43

interaction that arises between program factors and programmer

attributes.

Paulsen studied the relationship of productivity to program

composition and program size[Paulsen, 1981]. Productivity was

measured in terms of changed source instructions(CSI) produced in one

person-year(PY) because most of the products developed by her

organization, Santa Teresa Laboratory(STL), are modifications and/or

enhancements of existing IBM products. CSI includes new as well as

modified lines of code for the total product(TSI).

Paulsen's study of STL product development revealed that when

productivity is plotted against the ratio(CSI/TSI) of changed source

instructions(CSI) to the total number of statements(TSI), a convex

curve results. When the CSI/TSI ratio is less than approximately

0.50(that is, the reused code is greater than 50 percent),

productivity has a positive slope. When the CSI/TSI ratio is greater

than approximately 0.50(that is, the reused code is less than 50

percent), productivity has a negative slope. The increasing slope of

productivity when the percentage of reused code is high is due to the

fixed overhead effort involved in handling a program. As CSI

increases within this range of reused code, productivity(CSI/PY) will

increase because more lines of code will be changed within the time

expended which is dominated by fixed overhead effort. When the

percentage of reused code is low and the number of CSI increases, the

overall effort involved is no longer dominated by the initial fixed

overhead effort. Therefore, within the range of a lower percentage

44

of reused code, productivity decreases as the number of CSI

increases. Since compatible language conversions can be considered

to have a high percentage of reused code(code translated

automatically), it is not entirely unlikely that productivity will

increase with lines of code. This was true of the Air Force data but

it can not be concluded to apply to conversions in general. The

overall result of Paulsen's study was that productivity was affected

by program size and by the amount of reused code. No consideration

was given to programmer attributes.

Basili and Freburger's study mentioned earlier found that

productivity increased as the percentage of reused code

increased[Basili and Freburger, 1981]. This is intuitively clear

since the reuse of code should be less expensive than creating the

code from scratch. In this study, productivity was measured in terms

of the total number of delivered lines of code(expressed in thousands

of lines) which included data definitions, comment lines and source

statements which served as input to a language processor. The

denominator of the productivity ratio was total effort which was

defined as the total number of man-months of effort used on a

project, starting when the requirements and specifications become

final through acceptance testing. Effort includes programming,

management and clerical time, such that, one man-month of effort is

defined as 173.33 man-hours.

Basili and Freburger presented a productivity model they

developed from their data base. They defined productivity as a

function of the ratio of new lines of source code to total delivered

45

lines of code without any consideration of program complexity or

programmer attributes:

P = 698*RNTOL-0.75 where:

RNTOL = ratio of new lines of code to total delivered lines

of code.

This model suggests that productivity is lowest when there is not

reused code. Although Paulsen's data was from a very unique

environment, Basili and Freburger's model results parallel those of

Paulsen where the number of changed statements were over 50% of the

total product[Paulsen, 1981; Basili and Freburger, 1981].

Lawrence conducted an expanded study of productivity as it

related to the programming environment, programmer experience and

programmer methodology[Lawrence, 1981]. From earlier evidence,

Lawrence concluded that lines of code was a reasonable measure of

output to use in a productivity metric. Productivity is defined as

PL/T where PL is the number of procedure LOC and T is the total time

in man-hours put into the job by the programmer from the receipt of

program specifications to the completion of program testing. Comment

lines were excluded from the count of PL.

The study concluded that there was no significant difference in

the productivity of the four industry groups studied: semigovernment,

banks and insurance, manufacturing and mining, and software houses.

However, the results indicated that some organizations were obtaining

significantly higher productivity than others. The results also

showed that trainee programmers have a lower productivity than

I

46

intermediate and experienced programmers; however, no observable

difference was seen between the intermediate and experienced groups.

The regression analyses revealed that the inclusion of both

organization-identity variables and program and programmer variables

provide a 50% increase in R 2(coefficient of determination) compared

with either set of variables taken by themselves. The results

indicate that there are organization environment variables that, if

identified and measured, could lead to a better regression equation

for productivity.

Jeffery and Lawrence performed an inter-organizational study of

programming productivity(Jeffery and Lawrence, 1979]. Two of the

three organizations showed that productivity was moderately

correlated with experience(measured by years on the job) while the

third organization showed no such correlation. This counter-

intuitive result was recognized by Jeffery and Lawrence who offered

two possible explanations for the result: (1)after commercial

programmers learn their craft, additional experience makes little

difference, and (2)an inverse experience or skill relationship exists

as the better programmers are promoted quickly to systems analysis or

management, leaving the less skillful programmers as those with the

greater number of years of experience. There is nothing in their

sample data that provides a specific reason for this result. It is

interesting to note that this study was the only one reviewed that

exhibited this counter-intuitive result which indicates that a

measure of experience, other than years on the job, may be necessary.

47

Programming time and program size were found to be highly

correlated. It is significant that despite major differences between

the organizations studied, the equations developed for programming

time were very similar, both in terms of the model and the

coefficients. Organization three exhibited a positive correlation

between productivity and procedure LOC indicating that productivity

rises as program size rises. This s-emingly counter-intutive result

was perhaps due to the programming style at organization three which

was observed to have a tendency to reproduce sections of code rather

than packaging the code as modules and using call and perform

statements. There is a clear parallel between the style of

organization three and software conversion where large sections of

programs are converted by an automatic translator. This supports the

results of this thesis research which show that productivity rises

with program size for the Phase IV conversion sample data.

Wolberg stated that estimation is a "tricky" procedure because

of the many variables affecting productivity[Wolberg, 1983]. Using

the effort equation he developed, Wolberg formulated a model for

productivity(P) measured in lines per day. The effort equation was:

E = 7.14 * L
0 .47

Assuming 22 working days per month, productivity is calculated as:

P = (L*000)/(E*22)

which results in the following:

P = 6.37 * L
0 .53

48

Wolberg reiterated that his effort equation is based on man-hour

data that included all the staff time used in the RIS conversion

projects. Therefore, his productivity measure should be treated as

an estimate of total productivity with all project hours included;

i.e., planning, data preparation, conversion, testing,

implementation, documentation, etc. It is important to realize that

to use productivity measured in programmer hours only, to develop a

project budget, would be a grievous error.

Since many of the software development and software conversion

cost estimation models include productivity estimates in their

equations, valid productivity measures are a major concern. This

thesis research is geared towards studying the factors that affect

productivity rather than to determining another productivity measure.

Examples are the statements by Oliver that knowledge of the

application is not critical in performing the conversion and that the

programmers of a system may be the worst qualified to convert it

since they may not resist the temptation to "improve" the system

while converting it[Oliver, 1978].

Jeffery and Lawrence provide a summary and discussion of the

apparent inconsistencies of prior productivity research results and

definitions[Jeffery and Lawrence, 1981]. All studies reviewed,

except that of Jeffery and Lawrence, concluded that experience

significantly influenced development time[Jeffery and Lawrence,

1979]. In this one case of Jeffery and Lawrence only one of three

organizations showed no correlation between experience and

49

development time and they point out that this could be due to the

rapid promotion of good programmers to levels of management which

would produce a group of programmers whose years of experience might

not reflect their level of skill. Johnson's study, which does not

include reused code, revealed that productivity declined on the

average as project size increased[Johnson, 1977]. On the other hand,

Jeffery and Lawrence's and Basili and Freburger's studies, which

included reused code, found that, on the average, productivity

remained relatively constant as the size of the project

changed[Jeffery and Lawrence, 1977; Basili and Freburger, 1981].

Paulsen's work showed that when the amount of reused code is

approximately 50% or more, productivity has a positive slope but when

the amount of reused code is between 0 to approximately 50%,

productivity has a negative slope, thus productivity is depicted as a

convex curve with the high point relatively close to 50% reused

code[Paulsen, 1981]. This phenomenon explains why Walston and

Felix's study of IBM systems, with much reused code, revealed that

productivity increased as the percentage of reused code

decreased[Walston and Felix, 1977]. This also indicates why Basili

and Freburger's work, which included less than 50% reused code,

showed productivity decreased as the percentage of reused code

decreased[Basili and Freburger, 1981]. Paulsen stated that products

with few new or modified LOC(small size) tended to have lower

productivity because of what she called the fixed cost overhead. In

the area of software conversion where the source and target languages

50

are very similar, the amount of "reused code" is close to 100% so it

is logical to expect productivity to increase somewhat as the size of

the program increases.

Differences also exist in the independent variables selected for

the research. For studying programming productivity, the concern is

for the time spent by the programmer and Jeffery and Lawrence

included only the hours recorded from receipt of program

specifications to delivery of tested code[Jeffery and Lawrence,

1979]. Walston and Felix included time from the inception of a

project to its implementation while Basili and Freburger included

management and clerical overhead with programming effort. Wolberg's

conversion effort study also included time from the administrative

initiation of projects until final implementation[Wolberg, 1983].

The apparent lack of consensus in the literature is primarily

due to differences in terminology, in the sample data, and in the

specific variables being considered by the researchers. One element

of new development research which requires strict definition to

increase the commonality of the various studies is that of reused

code. Also requiring clarity are the studies' definitions of LOC and

programming time. Although there appear to be no apparent

differences in the productivity of the industries studied by

Lawrence, the results indicate that some organizations are achieving

significantly higher productivity than others[Lawrence, 1981]. This

thesis research shows that program size, programmer experience,

program complexity and organization have a definite impact on the

conversion productivity of programmers.

51

CHAPTER IV

AIR FORCE PHASE IV PROGRAM

Since the data for this research is being provided by the Air Force,

it is fitting to include a detailed presentation of the Air Force's

computer replacement program called the Base Level Data Automation

Program and officially short-titled Phase IV(fourth contractural

agreement for base level data automation support). This not only

assists in the discussion of the general area of software conversion

but also provides an analysis of the environment from which the

software conversion sample data for this research is drawn.

Program Prescription

The Air Force Phase IV Data Project Plan provides an overview of the

program since its inception[Air Force Automated Systems Project

Office, 1982b]. The Phase IV Program was established in April 1976

to modernize existing base level computer hardware systems. The

formal requirements specifications, Data Automation

Requirements(DAR), for the Program were completed in September 1976

and submitted for certification. The Assistant Secretary of the Air

Force for Financial Management(SAF/FM) granted the conceptual

certification in October 1976.

In February 1977, the SAF/FM was designated the source selection

authority(SSA) and in April 1977 the Air Force Automated Systems

Project Office(AFASPO) was chartered to function as the Phase IV

52

Program Manager. The SAF/FM granted definition certification in

March 1978 and the performance specifications for the request for

proposal(RFP) were completed in April 1978. The General Services

Administration granted Delegation of Procurement(DPA) to the Air

Force in August 1978 and with the SAF/FM's approval the RFP was

released in December 1978.

In April 1979, the GAO began a review of the Phase IV Program as

requested by the Chairman, House Government Operations

Committee(HGOC). Hearings were held before this Committee while RFP

responses were being received and evaluated. In October 1979, the

GAO released its report of findings which was critical of several

elements of the Program and recommended that it be canceled. In

November 1979, GSA suspended the DPA pending action by the HGOC. The

Air Force immediatedly responsed to the HGOC detailing significant

weaknesses in the GAO's analysis and presenting a strong case for

continuing the Program. However, the HGOC accepted the GAO's

recommendation requesting that the Air Force consider establishing

regional centers instead of doing an across the board replacement of

all existing computers. In January 1980, GSA and the Air Force

agreed on a redirection of the Phase IV Program.

The DPA was reinstated in April 1980, after the HGOC reviewed

the Program redirection. Contract negotiations were resumed and in

December 1980, Burroughs and Sperry-Univac Corporations were awarded

contracts to competitively transition a set of software systems and

demonstrate adequate performance on their own hardware. In October

53

1982, an operational test of the contractors' hardware and converted

software was initiated. A study of the results lead to a decision in

January 1983 to award the Phase IV contract to Sperry-Univac.

Phase IV Materialization

About 150 new computers(Sperry-Univac 1100/60) will replace over 225

base level computer configurations of Burroughs B3500/3700/4700 and

Sperry-Univac U1050-II computers. The Burroughs machines support

such functions as finance, procurement, personnel, etc. while the

Univac 1050-II's support the base supply function. The hardware

installetion and software conversion and implementation is being

accomplished in two increments. These increments are referred to as

the Xl and X2 workloads. The Xl increment involves the replacement

of the Univac 1050 systems with associated software, while the X2

increment involves the replacement of the Burroughs machines and

associated software.

Sperry-Univac is responsible for converting about 20 standard

software systems(l.5 million LOC) while about 25 Air Force

development centers(primarily major air commands) are responsible for

converting about 300 software systems(3 million LOC) that are unique.

One of the objectives of the Phase IV Program is to extend the

data processing support of base level users through the 1990's by

acquiring upgradeable/expandable hardware from a single vendor's

family of equipment. Phase IV planners are expecting the useful life

of the Sperry-Univac equipment to be 12.5 years from installation. A

54

12 year economic life was used for costing purposes with the

remaining half year being used for the removal and disposition costs

of the equipment. For life cycle budgeting, Phase IV permits two

negotiated contract extensions with Sperry-Univac for a possible

total of about 20 years under one ADP Program. The life cycle cost

estimate for the Phase IV Program(in 1977 fiscal year -constant

dollars) is $2.3 billion while the net impact on the Air Force budget

is a life cycle cost decrease of about $350 thousand indicating that

Phase IV is actually going to save money.

There will be 63 single system bases, 28 dual system bases(56

computers) and 14 regional centers427 computers). In addition, two

X2 workload systems will be installed at the Defense Mapping Agency

and there will be two transportable systems.

Conversion Assistance, Tools and Procedures

The Air Force Automated Systems Project Office(AFASPO), having

primary responsibility for managing Phase IV, developed a guidance

package to provide Air Force major air commands(MAJCOM) and Separate

Operating Agencies(SOA) with information needed to effectively plan

and accomplish their software conversion efforts[Air Force Automated

Systems Office, 1982a]. An understanding of the guidance/information

provided in this package permits one to appreciate the environment

within which the conversion is taking place and uniquely defines the

data used in this research.

55

The AFASPO guidance package called for the MAJCOM/SOA unique

software to be converted as follows:

1. COBOL -- Automatic recoding, as defined in this dissertation,

of Burroughs extended COBOL-68 to Sperry-Univac COBOL-74 will

be accomplished with a Sperry-Univac automatic translator of

90% effectiveness rate(minus the ENTER verb). Manual

recoding will be applied to complete the task.

2. FORTRAN -- No automatic translator was thought to be necessary

because of the small number of FORTRAN programs so manual

recoding is to be used.

3. Burroughs Assembly -- All systems written in Burroughs

Assembly are to be converted by means of reprogramming, as

defined in this dissertation.

4. AFOLDS -- Air Force Online Data System(AFOLDS) programs will

require only minimal manual recoding since the contractor is

to convert the AFOLDS such that it accepts currently existing

programs.

Ten Sperry-Univac computer systems will be available throughout

the country to support the conversion effort of the 29 MAJCOM/SOA

development centers. Each center was assigned to a specific system

for the conversion effort which would thus be started ,or to the

installation of the new equipment at most sites.

The contractor is also supplying utilities to convert data files

from the existing machines to the Univac 1100/60. Also included are

utilities necessary to validate the data files converted.

56

The Air Force is to provide to all development centers the

following tools:

1. Percent Execute -- This system inserts probes in a COBOL

program to monitor its execution. It is used to determine

what parts are being executed by a given data set, thus

permitting the development of more complete test data sets.

2. Documentation Aids -- The current language processors plus the

COBOL and Assembly concordance tools provide variable usage

and cross reference information. In addition a flow chart

generator is provided for COBOL programs.

3. Phantom Paths -- This tool isolates "dead" code which cannot

be reached and which can be deleted since it serves no useful

purpose.

4. Burroughs Filter -- This tool is used to identify code which

has a high probability of not translating to the new

equipment and thus should be removed if possible.

5. Automated Compare -- Automatic comparison of files, as

mentioned above, is provided.

Testing procedures require that the functional equivalence

between the original and converted code be proven by means of visual

verification of output.

The guidance package calls for preparatory or pre-conversion

tasks, to include the following:

1. Removal of "dead" code. Phantom Paths may be used to

facilitate the isolation of this code.

57

2. Improvement of code by replacing complex source code with

simpler code and removing verbs which have a high probability

of not converting automatically. The Burroughs Filter may be

used.

3. Identification of problem code and removal if possible. Some

segments of code which are in this category are: code

sensitive to changes in collating sequence, code which uses

Burroughs extensions or assembly language and code which

relies on special operating system or hardware features.

4. Improvement of documentation. Documentation standards must be

followed and a set of standard documents must be available to

support the conversion of each system.

Resource estimation, a pre-conversion task, was to be

accomplished using the Hahn and Stone model as modified by the Air

Force or an Air Force devised average method[Hahn and Stone, 19703.

These are discussed in Appendix A.

Initial Conversion Experiences

Sperry-Univac converted an initial system of 26 COBOL-68 programs.

This conversion was analyzed by the Air Force and this led to the

AFASPO STC 404 report which includes much useful information for the

remaining conversions(Air Force Automated Systems Project Office,

Undated]. Some assumptions listed are the following:

1. The recoding of major command software will be strictly

recoding with no improvements. Allowing modifications during

conversion increases risks.

58

2. New capabilities offered by the target environment will not be

exploited during the conversion. This is again to minimize

risk.

3. The format, structure and medium of all input and output files

will not be changed until the software has been transitioned

and successfully implemented.

4. All source and data files on the Burroughs systems will be

copied to tape using the File Management System(FMS). The

Univac 1100/60 has the capability to process these FMS tapes.

It was discovered that the bulk of the existing documentation

for Burroughs systems could effectively be transferred to the new

environment. Most of the changes needed applied to the operators

manual and the majority of these changes related to job control

language and Burroughs terminology. Very few changes were necessary

for the users manuals. All these changes can be highlighted before

the conversion so that changes can be made easily.

The evaluation of this initial conversion process reveals that

all programs increased in size after going through the translator and

even more after the manual recoding of the source lines that were not

automatically translated. The increase in program size is typical of

what can be expected by conversion programmers. A 28,569 line system

that was recoded by a contractor, using automatic and manual

translation from B3500 COBOL-68 to Sperry-Univac COBOL-74 was

analyzed. An increase of over 20% to 35,279 lines of code was

discovered. The Air Force plans to improve the efficiency of these

L'A

59

converted programs only after the initial effort is completed and the

converted programs compile and produce the required output. This

approach is both less costly and less risky. Following this type of

approach, if the resulting system operates as specified within the

allowed time and space constraints nothing further needs to be done

to the code.

The discussion above refers primarily to a contractor's early

experience. This thesis research is concerned with an analysis of

early conversion experience data of Air Force programmers.

Subsequent chapters relate the data encoding and analysis performed

along with the results obtained by this study.

Conversion Effort Data Collection

Since all of development or conversion centers are scattered

throughout the country (two are outside the continental United

States) and ifnction somewhat independently, an automated method of

collecting data was infeasible. Therefore, data was requested in raw

form using AFASPO developed instruments or forms which were completed

and forwarded to AFASPO. The basic requirement was for conversion

centers to submit a monthly report to the AFASPO detailing the number

of manhours expended for pre-conversion, conversion and post-

conversion tasks(Air Force Automated Systems Project Office, 1982a].

The monthly report format was subsequently changed to one which

requests a percentage of completion be provided for each system the

center is converting.

60

Of primary interest to this research is the AFASPO letter which

requested that programmer resumes for all conversion programmers be

provided in the format specified(Figure l)[Air Force Automated

Systems Project Office, 1983]. Each program converted was to be

detailed in a program information form describing the program and the

effort required to convert it(Figure 2). This data collection effort

began in June 1983 and is not due to be completed until late 1985.

The programmer resume form is very straightforward; however, the

information requested, in some cases, produces a variety of

responses. For this reason, an encoding scheme (presented in

Appendix B) was developed by this researcher to refine the raw data.

The program information form is also straightforward but it

requires some definition of terms. The "System Code", "DSD"(Data

System Designator), "System Title" and "Program Title" are all center

specific and pre-defined. The "Difficulty" description categories

primarily reflect characteristics of source programs that Sperry-

Univac had found to require manual recoding after the automatic

recoding of the automatic translator[Air Force Automated Systems

Project Office, Undated]. The sum of the number of difficulty

categories checked was used as a measure of program difficulty or

complexity. The "Switches" category recognizes that B3500 COBOL-68

software switches used in a VALUE statement are not available in

COBOL-74. The "Interrogate" category reflects the requirement to use

a different method to test for the presence of a disk or diskpack

file since the INTERROGATE statement is not available in UNIVAC

61

Z. Programmer Code

Z. Education

College Graduate? Degree: Associate B Sachelors

Masters __ hD

Major(s): Minor(s):

Formal Instruction (in relation to computer field):

1Z1. Backqround

A. How many years experience do you have in the computer
field?

B. How many of these years are actual programming years?

C. How long have you been proqramming in C2BOL 68?
I COBOL 74?

D. Was this experience primarily in development or main-
tenance work?

E. If the majority of programs you shall be transitioning
are not COBOL. then what type of system are they
and how many years experience do you have with them

F. How much experience do you have with transitioninq?
Explain.

G. How much experience do you have in working with Job
Control Languaqes?

H. List any other experx.nce which will aid you in tran-
sitioninq unique software to Phase V.

Figure 1. AFASPO Phase IV Progracer Resume Form

62

system Code.

Proven T?Ie

care Stueed Lines of Code (Str)

Dat. caftlaee - .".. Is Cad* (Finish)

A. Type (COC2W One)

1: tarrn 2 SCAci

ITAFLOS Oni- In*

1. Difulty~ (Chem ownf wee trh. grogran taonains)

2 ~.t 2 i's

ZIP Rado 1 /0
2 itrwe2

(Libraies)

2Caem Data Ifltgroqare

2call

Il. AaIVIT'Y

ommi-aw-1rld
Data.it ?ranser .z r z z

ADSI Trn alnW.CI
Crews, Cantrel Laeguag. I
?ee'jmea"qF- -~

14ag 1 Sew s - F - -Xxmtzz{- CAR
OR~owl"" as" srlatiorn re Memtedge at MhIS DW Oey . 0-et a? t oI.

1l-wa Z kemalea., Smatot PRO orwas.

Figure 2. APASPO Phase IV Program Information Form

63

COBOL-74. The "Reel #'s" category refers to the B3500 COBOL-68 USE

verb which specifies procedures for tape label handling such as reel

number extraction. This capability is not available in COBOL-74; the

CALL routine replaces this function. The "Zip" category indicates

that the ZIP verb which causes the Burroughs operating system to

execute a control instruction contained within the operating object

program is not available in COBOL-74 so it must be recoded. The

"Sort" category indicates great care is required when sorting is

called for because B3500 systems use the EBCDIC character set where

alphabetics appear before numerics while the Sperry-Univac systems

use the ASCII character set whose collating sequence is the reverse.

Logical compares, range checks etc., based on the EBCDIC sequence,

have to be recoded. The "Comp Data" category indicates that Comp

definitions are manually redefined as numeric fields. This has no

affect on arithmetic operations but will cause expansion of record

size and data item picture fields. On the B3500 there are two COMP

fields per word while the Univac 1100/60 has six fields per word.

Consequently, word boundary alignment problems could result if COMP

is not redefined. The "Random I/O" category indicates that when

random (or sequential)files are open for input/output, the WRITE

statement is replaced by a REWRITE statement. Also the entire I/O-

Control section is always flagged for manual recoding. The "COPY"

category flags the program as requiring access of the COPY library.

Subsequent action insures that the COPY executes correctly and the

library is available and correctly converted. The "Call" category

64

indicates the need for routines to be available and converted for the

program to execute correctly. Also, the ENTER symbolic statement in

Burroughs COBOL-68 which provides the use of an alternate language

must be recoded. The COBOL-74 Interprogram Communication module,

which provides for CALL and ENTER statements to communicate with

other programs, must be used.

The first row of blocks of the activity matrix of the program

information form requests the programmer code as specified on the

programmer resume. The "Data File Transfer" accounts for the time

required to dump program external tables and test data to tape from

the old system and its subsequent uploading on the Univac system.

This is typically insignificant since several data files may be

transferred at once quite easily. The "ADS Translation" accounts for

both the automatic and manual recoding of the program ("ADS"). The

automatic recoding effort may be quite insignificant since several

programs may be grouped and funneled through the automatic translator

which may require only a few minutes per program. The "Create

Control Language" category accounts for the time, in many cases

minimal, to establish the Univac job control statements pertinent to

the program.

The program information form contains various program

characteristics which the programmer indentification code(s) links to

programmer attributes. These groups of data provide variables such

as those suggested by many of the researchers mentioned in Chapter 3.

65

The programmer resume and programmer information forms provided

the basic data required for the productivity analysis and the

corresponding encoded data files are included in Appendix C and D

respectively. However, because of the distinction between system

level and program level manhour accounting and the nature of

cost/effort estimation models, additional data was necessitated. The

Air Force Data Systems Design Center(AFDSDC) and the Tactical Air

Command(TAC) provided system level manhour data which accounted for

most of the second stage(conversion) of the Phase IV effort within

each organization. Each record of this additional data, detailed in

chapter 6, contains a code for the organization and a system code

followed by lines of code, manhours and number of programs.

66

CHAPTER V

CONVERSION PROGRAMMER PRODUCTIVITY ANALYSIS

Introduction

The Air Force Phase IV software conversion effort data provided the

basis for this research. Before initiating the productivity

analysis, the programmer resume and the program information data were

viewed and studied separately. The separate data files were then

integrated, as appropriate, for further detailed analysis. The

objective was to study the impact of program factors and programmer

attributes on the conversion productivity of programmers. A brief

discussion of the preliminary analysis(detailed in Appendix B) seems

appropriate before proceeding with the details of the productivity

study. A glossary of significant statistical terms used in this

thesis is provided as a reference.

Preliminary Analysis

The preparatory stage of the study required the formulation of an

encoding scheme for the raw data and the construction of both a

programmer resume file and a program information file. These two

files were analyzed separately by means of tabular summaries, Chi

Square tests and Factor Analysis. The initial Chi Square tests

revealed that recoding of some categorical variables was necessary

for the tests to be valid so changes to the original encoding scheme

were implemented. It was also discovered that most of the program

information data showed no man-hours for the first two activities,

67

documentation and data file transfer, since these two activities were

typically handled at the system level. To improve the uniformity of

the data, the total effort hours for productivity analysis were

derived from summing only four of the six categories of the program

information form activity matrix. The details of this preparatory

stage and preliminary analysis are contained in Appendix B.

The programmer resume file and program information file were

merged to generate a productivity file of records containing both

program and associated programmer data. The program conversion

effort data, consisting of 130 programs all written in COBOL, came

from six different Air Force centers. In order to insure a precise

set of data for research where distinct relationships between a

programmer's attributes and the conversion effort could be studied, a

subset of the productivity sample file was created. This subset only

contains programs converted by one programmer since group interaction

and group productivity are not considered in this study. The subset

only contains 51 programs and is titled the individual productivity

file. All work discussed uses the individual productivity file.

Definitions and Assumptions

Two items that have typically caused confusion in research on new

software development are lines of code and total man-hours used. For

this conversion research, STLOC(starting LOC) is used to measure the

size of a program before undergoing the conversion process. Comment

lines are included in the count but not job control statements since

68

no such statements are used by programmers in the B3500 base level

environment. SUMHR is used to measure the total number of hours

spent by a programmer in recoding a program (including time involved

in using the automatic translator), generating job control

statements, testing the results, and related miscellaneous hours. As

mentioned above, the documentation and data file transfer activities

were not included in SUMHR because of inconsistencies in reporting.

The SUMHR definition generally parallels that of programming time

used by Jeffery and Lawrence[1979]. However, there is no clear

definition of what miscellaneous hours a programmer is legitimately

authorized to count. The definition of all other variables was

included in Appendix B but a brief statement of their meaning is made

in the next section of this chapter.

General Overview of Analysis Methodology

The framework for this analysis is a multi-step process embodied in

two basic stages. First, the variables, which resulted from the data

collection, anderwent resolute cerebration which involved an initial

separate investigation of the categorical and continuous variables.

Secondly, the variables found to be significant were used as the

independent variables in regression analysis to develop a model which

might be usefuxl in explaining productivity. The productivity measure

used as the dependent variable was lines of code per hour(LOCPERHR)

calculated by dividing STLOC by SUMHR for each program. Following

Jones' suggestion, hours per hundred lines of code(HRPERHLO) was used

69

as a dependent variable to provide parallel results for

comparison[Jones, 1978]. A natural log transformation of LOCPERHR

was also regressed as a dependent variable.

Selection of Relevant Variables

To clarify the starting basis for this section of the work, it is

appropriate to present a synopsis of the research variables. There

are basically two sets of variables: those describing the programmer

and others related to the program itself. An additional grouping of

the variables is by type; i.e., categorical(nominal) or continuous.

These two groupings provided a point of departure for the analysis.

A description of all the variables including those subjected to

recoding are included in Appendix B.

Categorical Variables Subjected to Analysis of Variance

Two variables of primary interest are DEGREE(level of college

education) and MAJOR (academic major). The value of DEGREE was

recoded to be one of the following: 0(no college), l(some college) or

2(college graduate). Those that have attended college and recorded a

major fall into one of four categories of MAJOR: 0(none), l(other),

2(DP-MIS, Math, Science) or 3(Computer Science). Another variable

recoded was one describing the type of conversion experience(CONEXP).

CONEXP was permitted to take one of four values: 0(no experience),

l(some experience), 2(greater experience including any COBOL-68 to

COBOL-74 experience), and 3(early Phase IV experience). The values

70

of programmer experience type(PTYPE) maintained their initial

definitions: 0(no experience), l(maintenance type), 2(maintenance

and development type), and 3(mostly development type).

All variables describing an individual's formal training were

defined as binary. A value of 1 meant that the individual had

training in the specific area of variable definition while a 0

signified no training. The variables in this group are: FTNG6

(COBOL-74), FTNG5(all other COBOL), FTNG4(AF Online Data System),

FTNG3(other programmer training), FTNG2(Sperry-Univac training), and

FTNGl(other general ADP training).

In the process of learning more about these variables, the

average value of LOCPERHR for each categorical value was

calculated(Table 3). Then an analysis of variance model was formed

with all the above being explanatory variables and LOCPERHR as the

dependent or response variable. The SAS general linear model(GLM)

procedure was used for the analysis of this exploratory design. A

definitional aid for interpreting GLM output is provided in the

glossary.

The SAS results demonstrated an analysis of variance(ANOVA) test

statistic(model F value) of 1.9 with a significance level of 0.0625

for the entire model. Given the null hypothesis that all the

coefficients(or contributions) of the variables equal zero(0), the

probability of rejecting a true null hypothesis(Type I error) is

0.063. Since the probability of Type I error is greater than the

generally accepted criteria of 0.01 or 0.05, one can not reject the

71

Table 3. Lines of Code Per Hour'LOCPERHR) Averages for Categorical
Variables.

Variable N Mean Variable N Mean Variable N Mean

MAJOR PTYPE CONEXP
0 40 79.5 0 10 86.3 0 45 63.1
1 9 37.1 1 4 20.5 1 3 228.3
2 1 24.4 2 19 37.6 2 0 -
3 1 21.4 3 18 105.5 3 3 10.7

DEGREE FTNG1 FTNG2
0 23 89.5 0 35 86.3 0 5 27.4
1 18 63.5 1 16 33.5 1 46 74.4
2 10 35.5

FTNG3 FTNG4 FTNG5
0 4 172.5 0 50 70.7 0 35 86.4
1 47 61.0 1 1 21.4 1 16 33.3

FTNG6
0 48 59.9
1 3 228.3

null hypothesis which means that either the null hypothesis is true

or the data, for some reason, does not allow the detection of small

differences from zero. More pointedly, the partial F values for each

of the categorical variables were all less than 1 and no level of

significance was less than 0.5 meaning that the explanatory

contribution of each and every categorical variable was statistically

nonexistent; that is, one can not reject the hypothesis that the

contribution of each coefficient of the variables is 0.

One reason for these results is the unequal cell frequencies of

categorical variables which implies the presence of

multicollinearity[Iverson and Norpoth, 1976]. GLM optionally

provides for the computations of tolerance values for each variable.

A tolerance value is the inverse of the variance inflation

72

factor(VIF) which measures the combined effect of the dependencies

among the regressors on the variance of the term whose VIF is in

question[Montgomery and Peck, 1982]. One or more large VIFs

indicates multicollinearity and practical experience has demonstrated

that if any of the VIFs exceeds 5 or 10, poor estimation of

associated coefficients results. Several VIFs in the ANOVA model

were much larger than 10 indicating multicollinearity. In pure

analysis of variance work, contingency table tests of independence,

such as those described in Appendix B, are typically used to detect

multicollinearity[Iversen and Norpoth, 1976]. Only when the Chi-

Square value equals 0 is one assured of uncorrelated variables.

Of the methods for dealing with multicollinearity, variable

elimination seemed to be the most practical[Montgomery and Peck,

1982]. This opened up the entire subject of variable selection

techniques and procedures where one can find clear signs of

Mendenhall's exposition that "the application of theory to the

solution of practical problems is an art and subject to

debate[Mendenhall, 1968]." Cox and Snell provide some basic

guidelines, useful for choosing variables in observational studies,

that are applicable to this work[Cox and Snell, 1974].

One criterion for choosing variables is for the available data

to be roughly evenly split across the levels of a categorical

variable in order for the effect on the response variable to be as

clear-cut as possible. variables which indicate high dependencies

and/or are considered alternatives are good candidates for

73

elimination because of multicollinearity and for reasons of

simplicity. Including too many variables in a model typically raises

the mean square error of prediction. If the objective of a fit to

data is primarily for prediction then two different models, involving

different variables, are equally acceptable if they fit the data

equally well. Simplicity, in terms of the number of variables, is

the basis for choosing between these models, if necessary.

In terms of an adequate split of the data over the levels of a

variable, the best candidates for selection were DEGREE(level of

college education), PTYPE(programmer type), FTNGl(general ADP

training), and FTNG5(general COBOL training). A possible second

place selection was MAJOR(academic major), with CONEXP(conversion

experience type) barely squeezing in for consideration because of its

natural significance in this study. Since the Chi-Square tests

recorded in Appendix B showed a significant level of association

between CONEXP and PTYPE, CONEXP and DEGREE, and CONEXP is really

inadequate in its data splitting over its levels, CONEXP was

subsequently excluded from consideration. Because both DEGREE and

PTYPE exhibited a significant association with FTNG1 and it measures

a formal training area of little concern to this study, FTNG1 was

also excluded. Since FTNG5 is significantly associated with PTYPE

and duplicates a couple of the continuous variables (C68EXP and

PGMEXP) and since COBOL training may already be associated with the

programmer's academic education, FTNGS was deleted as a candidate

variable. Even though MAJOR and DEGREE showed a highly significant

74

association, MAJOR was allowed to remain as a candidate variable to

provide for correspondence with other research. Care was to be

exercised in interpreting model results if both remained in the final

reduced model. In summary, the categorical variables chosen as

candidates for the combined model were PTYPE, DEGREE and MAJOR.

Continuous Variables Scrutinized

The continuous variables derived from the programmer resume file

include total years of ADP experience(TOTEXP), years of programmer

experience(PGMEXP), COBOL-68 years of experience(C68EXP), COBOL-74

years of experience(C74EXP), and years of JCL experience(JCLEXP).

The productivity file also includes continuous variables from the

program information file. Of the two measures of lines of code,

STLOC(starting LOC) is the most appropriate for a predictive model

since FILOC(finishing LOC) is not initially available. The level of

difficulty or complexity of a program is significant for productivity

studies so a count of the number of difficulty categories checked by

the programmer(SUMDIF) was used in addition to lines of code(STLOC)

to further define the program. The knowledge code(KCA) of the

programmer for a specific program was reserved as a continuous

variable since it is an ordered variable which could very well have

intermediate values.

The process of selecting candidate independent continuous

variables follows the same basic pattern as that for categorical

variables. Multicollinearity, duplication of a variable, inadequacy

75

of data, and simplicity were used as criteria for candidate variable

selection. From the factor analysis and correlation matrix of the

preliminary analysis (Appendix B), one can vividly see the presence of

correlation between the experience variables. TOTEXP, PGMEXP and

C68EXP seem to provide very similar information and thus may not all

be required in a model. C74EXP and JCLEXP show some correlation but

not of the same degree as the other three variables.

An advantage of continuous variables is the availability of

automated techniques to assist one in variable selection. Stepwise

regression techniques have slight differences in their approach and

suitability. Montgomery and Peck stated that the backward

elimination algorithm is often less adversely affected by the

correlative structure of the regressors; therefore, it was chosen for

this variable selection[Montgomery and Peck, 1982]. The backward

elimination algorithm permits a variable to return to the mix

(forward selection) if it becomes significant after other variables

leave the mix(backward elimination). As suggested by Montgomery and

Peck, the partial F test level of significance for forward selection

was set at 0.25 while the level of significance for backward

elimination was set at 0.10[Montgomery and Peck, 1982). The

dependent variable was again LOCPERHR.

Using the SAS STEPWISE procedure for Backward Elimination, only

PGMEXP and TOTEXP were deleted from the list of variables with all

the remaining ones(STLOC, KCA, SUMDIF, JCLEXP, C68EXP and C74EXP)

being significant at the 0.007 level or less. Montgomery and Peck

76

warn that, though helpful, stepwise techniques like backward

elimination do not necessarily produce an optimal model since there

may be several models that are equally good. With this in mind and

to expand the scope of explanatory variables for the model, PGMEXP

was also included as a regressor to bring in the individual's general

and overall programming experience.

Model Variables Selected

In summary, the categorical variables of interest for starting the

regression analysis were DEGREE(level of college education),

PTYPE(programmer type), and MAJOR(academic major). The continuous

variables for the initial model were STLOC(starting LOC),

KCA(programmer's knowledge level), SUMDIF(measure of program

difficulty), C68EXP(years of COBOL-68 experience), PGMEXP(years of

general programming experience), C74EXP(years of COBOL-74 experience)

and JCLEXP(years of experience with JCL).

Model Specification and Analysis

When building a model with both quantitative and qualitative

variables, one is in the statistical realm of analysis of covariance

which is a special case of the linear model. However, when

quantitative(covariate) and categorical independent variables are of

equal interest or the design is unbalanced, regression analysis is

not only equivalent to analysis of covariance it is also more

appropriate[Ahtola and Wildt, 1978]. Equivalency is obtained by

77

representing the qualitative variables by dummy variables. This is

easily done within the SAS GLM procedure by identifying the

categorical variables in the CLASS statement. The glossary contains

an aid for interpreting GLM output as presented in table form in this

chapter.

Initial Model Analysis

When performing the initial runs, it was discovered that GLM normally

sets the coefficient of the highest level of a categorical variable,

whether alphabetical or numerical categories, to zero and includes

its effect or value in the intercept term. Therefore, for the

purpose of the regression analysis the codes for PTYPE, DEGREE and

MAJOR were reversed with the highest value becoming 1 and so on, to

allow these lower numbered levels, which were of greater

significance, to have specifically defined coefficients.

The initial model, with LOCPERHR as the dependent variable and

STLOC, KCA, SUMDIF, C68EXP, PGMEXP, JCLEXP, C74EXP, DEGREE, MAJOR and

PTYPE as the independent variables is shown in Table 4. The

coefficient of determination(R 2) shows that 77% of the variability of

LOCPERHR is explained by this model. The coefficient of

variation(C.V.) expresses the unexplained deviation remaining in the

data relative to the mean response. The mean square error(MSE) is

used as an estimate of the model's variance yielding root MSE as an

estimate of the model's standard deviation. The model's F value is

significant at 0.0001 indicating that at least one coefficient is

78

Table 4. Initial Version of Productivity(LOCPERHR) Model.

DEPENDENT VARIABLE: LOCPERHR

SOURCE DF SUM OF SQUARES MEAN SQUARE

MODEL 14 232050 16575
ERROR 36 70551 1959
CORRECTED TOTAL 50 302602

MODEL F PR > F R-SQUARE C.V. LOCPERHR MEAN

8.46 0.0001 0.77 63.5 69.76

SOURCE DF TYPE III SS F VALUE PR > F

STLOC 1 107658 54.93 0.0001
KCA 1 9048 4.62 0.0385
C68EXP 1 16899 8.62 0.0058
SUMDIF 1 28862 14.73 0.0005
PGMEXP 1 11120 5.67 0.0226
JCLEXP 1 29339 14.97 0.0004
C74EXP 1 1115 0.57 0.4557
DEGREE 1 195 0.10 0.7541
MAJOR 2 3272 0.83 0.4422
PTYPE 3 10426 1.77 0.1697

non-zero; that is, the probability of a Type I error of rejecting the

null hypothesis of zero coefficients is 0.0001. The partial Fs, or

partial sums of squares, indicate that four variables have a level of

significance much higher than the 0.10 guide used for hypothesis

testing in regression analysis. Of the four variables, C74EXP,

DEGREE, MAJOR and PTYPE, the two with the highest probability or

level of significance(DEGREE - 0.75 and C74EXP - 0.46) were

eliminated from the model. The VIFs, tolerance values, indicated no

significant level of multicollinearity.

79

Reduction of Initial Model

In deleting insignificant variables from a model, a decrease in R2 is

certain to occur. The R2 for the subset regression model must be

subjected to an adequacy test to insure a "satisfactory" value.

Aitkin proposed the calculation of an R -adequate(R) value as
0

follows[Aitkin, 1974]:

R2 = 1 - (1 - R)(1 + d'
where 0 x np

a P(F
)

npn - p - 1

R = R2 of initial starting set of variables
x_
p numbei of parameters
n = number of observations
a level of significance

The level of significance should be small(say .01-.10) if the

exclusion of all irrelevant variables is important. Aitkin also

suggested that a larger a(say .25-.50), insured that "important"

variables were not excluded while the inclusion of possibly

irrelevant variables was tolerated. For this work, an a of 0.25

seemed appropriate since many irrelevant variables had already been

excluded. Therefore, wi h n=51, p=10 and a=.25,

10 25

d0.25 =--------- 10L4 = .4(1.33) = 0.532
51,10 40

and R2 = 1 - (1 - 0.77)(1 + 0.532) = 0.65

0

With R 2 = 0.65 as a guide, one can begin to review reduced or

subset regression models. The next iteration of the model removed

2
C74EXP and DEGREE. The MSE decreased slightly and R was reduced by

80

only .01 while the model F value increased to 10.01 and the C.V.

changed only by about 0.7. All of the variables were significant at

.003 or less with the exception of MAJOR which showed a low partial F

value and a significance level of 0.307; that is, one can not reject

the hypothesis that the coefficient of MAJOR is zero.

Deleting MAJOR from the set of variables, produced a final

LOCPERHR model(Table 5) with all variables significant at 0.0006 or

less. This model has an MSE lower than that of the initial model and

an R2 of 0.74 which is more than adequate by Aitkin's criteria and

only 3% less than the initial model. Table 5 also contains the

coefficients associated with all the variables. A discwssion of the

resulting equation is necessary not only for explanatory purposes but

also to verify the model's adequacy by affirming the reasonableness

of the results.

The coefficient for STLOC seems small in comparison to the

others but realizing that the average STLOC value is over 1000 makes

it quite reasonable. The positive impact of size on productivity

agrees with the findings of Paulsen, Basili and Freburger, and

Jeffery and Lawrence in the new development arena[Paulsen, 1981;

Basili and Freburger, 1981; Jeffery and Lawrence, 1979]. It is

typically counter-intuitive for productivity to increase with lines

of code; however, the sample data indicates that this result occurs

when most of the code is converted automatically. Other conversion

efforts may not support this result especially if only a small

percentage of the code is converted automatically.

81

Table 5. Final Version of LOCPERHR Model.

DEPENDENT VARIABLE: LOCPERHR

SOURCE DF SUM OF SQUARES MEAN SQUARE

MODEL 9 222735 24748
ERROR 41 79867 1948
CORRECTED TOTAL 50 302602

MODEL F PR > F R-SQUARE C.V. LOCPERHR MEAN

12.7 0.0001 0.74 63.3 69.76

SOURCE DF TYPE III SS F VALUE PR > F

STLOC 1 120067 61.64 0.0001
KCA 1 35961 18.46 0.0001
C68EXP 1 43080 22.12 0.0001
SUMDIF 1 28152 14.45 0.0005
PGMEXP 1 27230 13.98 0.0006
JCLEXP 1 54250 27.85 0.0001
PTYPE 3 43238 7.40 0.0005

PARAMETER ESTIMATE

INTERCEPT 64.538
STLOC 0.132
KCA -20.630
C68EXP 20.528
SUMDIF -27.750
PGMEXP 21.703
JCLEXP -46.786
PTYPE 1 16.223
PTYPE 2 -68.289
PTYPE 3 -82.803

AD-A145 757 A METHODOLOGY FOR THE ANALYSIS OF PROGRAMMER 1
PRODUCTIVITY AND EFFORT ESTI..(U) AIR FORCE INST OF
TECH WRIGHT-PATTERSON AFB OH J D FERNANDEZ MAY 84

UNCLASSIFIED AFIT/Cl/NR-B4-44D F/G 9/
2

NL

EEEEIIIIEIEI
EEEEEEEohEEEEE
EEEEEmhEmhEEEE
EEEEEEEEEEEEEE
E.EmhEEEEEohEI
EohEohmhEEEEEI

111 10 1113- 111112.

11111.2 *-.4 "2

MICROCOPY RESOLJTION TEST CH~ART
NAT ONAL BQREAu Or s

T
AADS-963-'

82

The coefficient of KCA(programmer's knowledge of the program)

initially seemed to be an error. Intuitively, if a programmer is

more familiar with a program(higher KCA), it should be expected that

his productivity would be higher. However, this opposite result

confirms the comments made by Oliver about a U.S. Navy conversion

which indicate that if a programmer is converting his own program, he

is more likely to modify and/or correct program lines rather than

just recode the original program[Oliver, 1978]. Programs that fall

in this category sometimes show that the finishing lines of code are

the same or less than the starting lines of code, which is extremely

unlikely in this conversion as discussed in chapter 4. Programmers

may be "improving" their own programs or implementing unauthorized

changes requested by local management.

The coefficient of the variable SUMDIF, measure of program

difficulty, results in a negative value. It is intuitively logical

for this to be true since one would expect the productivity to

decrease as the level of difficulty of the program increases.

The presence of both C68EXP(COBOL-68 experience) and

PGMEXP(general programming experience) initially led to a concern for

multicollinearity. However, the VIFs(variance inflation factors)

indicated no significant level of multicollinearity. An increase of

20 LOCPERHR for each year of C68EXP and each year of general

programmer experience(PGMEXP) is possible for the conversion realm.

The magnitude of these coefficients is applicable to this case study

only; however, this result generally agrees with several new

83

development studies which showed that experience significantly

influences development time.

The negative coefficient for JCLEXP is only reasonable because

it was discovered during the data collection that the experience in

many cases included primarily academic experience for junior

programmers or programmer trainees. In addition, JCL experience for

intermediate or senior programmers in the B3500 environment was

typically nil since there is no JCL for associated application

programs. JCLEXP is essentially an indicator for an entry level

programmer and nothing more.

The categorical variable of PTYPE(programmer type) has four

levels but only three coefficients since the "no experience" level

effect is included in the intercept term by the GLM procedure. It is

very reasonable for the development type(l) programmer to have a +16

coefficient since he is more likely to have the highest productivity

because he probably has the greatest expertise. Programmers with

both development and maintenance experience(type 2) exhibit a

negative effect on LOCPERHR. This seems reasonable because

programmers in this category do not have the depth of experience as

development programmers since this category seems to be a stepping

stone for entry-level programmers who upgrade from the maintenance

type(3) level. The data shows, what may be common in many

organizations, that the inexperienced programmers typically start out

in maintenance.

84

Model adequacy is measured by several means, including R2 and

the reasonableness of the resulting parameters. Draper and Smith and

others suggest that another measure of model adequacy is that the

observed or model F value be about four times the critical F

value[Draper and Smith, 1966]. Since the fitted model exhibited an F

value of 12.7 and the critical F value for an alpha of .05 is 2.12,

the observed or model F value is approximately six times the critical

F value. This test suggests strongly that the model is statistically

adequate. A final measure of adequacy is the plot of the calculated

LOCPERHR(yhat) versus the residuals(difference between observed and

predicted value). The residual plot indicated an adequate scatter of

the points around 0, thus contributing to the assessment of an

adequate model.

Alternate Dependent Variable Models

The dependent variable of hours per hundred lines of code

converted(HRPERHLO) was used in regression analysis with the same

initial set of independent variables used with LOCPERHR. HRPERHLO is

essentially a productivity measure of "cost units" as suggested by

Jones[1978]. Therefore, the more productive a programmer is the

lower the value of HRPERHLO and vice versa. STLOC was converted to

HSTLOC(hundreds of lines of code) since this measure is more

appropriate for an HRPERHLO model.

The final or subset regression model with all variables

significant at the 0.048 level or below is shown in Table 6. The

model R2 of 0.73 is slightly less than that of the LOCPERHR model.

85

Table 6. Final HRPERHLO Alternate Productivity Model.

DEPENDENT VARIABLE: HRPERHLO

SOURCE DF SUM OF SQUARES MEAN SQUARE

MODEL 11 648.80 58.98
ERROR 39 245.80 6.30
CORRECTED TOTAL 50 894.58

MODEL F PR > F R-SQUARE C.V. HRPERHLO MEAN

9.36 0.0001 0.73 66.8 3.76

SOURCE DF TYPE III SS F VALUE PR > F

KCA 1 392.78 62.32 0.0001
HSTLOC 1 93.51 14.84 0.0004
C68EXP 1 126.37 20.05 0.0001
SUMDIF 1 26.23 4.16 0.0482
JCLEXP 1 52.90 8.39 0.0061
MAJOR 3 147.53 7.80 0.0003
PTYPE 3 143.26 7.58 0.0004

PARAMETER ESTIMATE

INTERCEPT 1.1264
KCA 3.2682
HSTLOC -0.3890
C68EXP -2.2135
SUMDIF 1.0864
JCLEXP 1.6393
MAJOR 1 -13.2499
MAJOR 2 -15.6522
MAJOR 3 7.8853
PTYPE 1 -0.0134
PTYPE 2 -7.2428
PTYPE 3 5.5494

86

The observed model F value of 9.36 is 4.6 times the critical F value

of 2.04(F.05, 11, 39) which qualifies as an adequate measure yet is

lower than that of the LOCPERHR model. As expected because the

dependent variable is in cost units, the coefficients for this

inverse productivity(cost) model have signs opposite of those in the

LOCPERHR model. This is true for KCA, HSTLOC, C68EXP, SUMDIF and

JCLEXP. Notice, however, that PGMEXP was found to be insignificant

and thus left the model while MAJOR remained at a fairly significant

level. The coefficient associated with a CS major(type 1) is

negative as expected since a reduction in HRPERHLO seems reasonable

for such a major. The DP-MIS/Math/Engineering category(type 2) also

shows a negative effect on HRPERHLO. The relatively small difference

in the absolute value might be explained by noting that the CS

academic major is somewhat new and more likely for newer and less

experienced programmers. Intuitively, it seems reasonable to expect

a social science, business or other major(type 3) to exhibit a

positive effect on HRPERHLO.

To reduce some of the variation in the data, an alternate

dependent variable model, with the natural log of LOCPERHR or

LOGLOCPH, was studied as suggested by Montgomery and Peck[1982].

Table 7 presents the final subset model that resulted from the

regression analysis. The variables which remained in the model

exhibited a level of significance of the variables of 0.008 or lower.

The coefficient of variation does show a decrease while the R2 only

increases by .01. The observed model F value of 10.89 is 5.3 times

I

87

Table 7. Final LOGLOCPH Alternate Productivity Model.

DEPENDENT VARIABLE: LOGLOCPH

SOURCE DF SUM OF SQUARES MEAN SQUARE

MODEL 11 38.1400 3.4673
ERROR 39 12.4228 0.3185
CORRECTED TOTAL 50 50.5628

MODEL F PR > F R-SQUARE C.V. LOGLOCPH MEAN

10.89 0.0001 0.75 14.9 3.7715

SOURCE DF TYPE III SS F VALUE PR > F

KCA 1 13.224 41.52 0.0001
4STLOC 1 13.882 43.58 0.0001
C68EXP 1 5.607 17.60 0.0002
SUMDIF 1 2.438 7.66 0.0086
JCLEXP 1 3.505 11.00 0.0020
MAJOR 3 4.334 4.54 0.0080
PTYPE 3 5.911 6.19 0.0015

PARAMETER ESTIMATE

INTERCEPT 4.15786
KCA -0.59968
STLOC 0.00150
C68EXP 0.46624
SUMDIF -0.33126
JCLEXP -0.42195
MAJOR 1 1.75704
MAJOR 2 2.79148
MAJOR 3 -1.32880
PTYPE 1 0.20660
PTYPE 2 0.86744
PTYPE 3 -1.67892

I
88

the critical F (2.04) which is adequate but less than that of the

LOCPERHR model. The resulting set of variables is the same as that

of the HRPERHLO model and only one variable different from the

LOCPERHR model, with MAJOR replacing the variable PGMEXP. As would

be expected, the signs of the coefficients are exactly the opposite

of those of the HRPERHLO model and parallel those of the LOCPERHR

model. This model might be considered equally as good as the

LOCPERHR except for the fact that the model uses logs rather than

natural values thus complicating the interpretation of the results.

The coefficient of variation(C.V.) does show a significant reduction

in the unexplained deviation remaining in the data since logs were

used in this model.

Consideration of Organizational Impact

Paralleling the new development productivity work of Jeffery and

Lawrence, it was decided to include the organization or conversion

center(MAJCOM) in the final LOCPERHR model to study the

results[Jeffery and Lawrence, 19791. Initially, the R2 increased to

0.79; however, the PTYPE variable was found to be insignificant at a

0.3 level and MAJCOM only marginally significant at 0.09. PTYPE was

removed from the model producing a further reduced subset with C68EXP

insignificant at a level of 0.1415. Table 8 shows the final LOCPERHR

with MAJCOM added and PTYPE and C68EXP removed.

The R2 of .75 for the organizational LOCPERHR model is only .01

higher than the original LOCPERHR model without MAJCOM. There is

89

Table 8. Final LOCPERHR Model With Organization.

DEPENDENT VARIABLE: LOCPERHR

SOURCE DF SUM OF SQUARES MEAN SQUARE

MODEL 9 227237 25249
ERROR 41 75365 1838
CORRECTED TOTAL 5C 302602

MODEL F PR > F R-SQUARE C.V. LOCPERHR MEAN

13.74 0.0001 0.75 61.5 69.76

SOURCE DF TYPE III SS F VALUE PR > F

STLOC 1 108053 58.78 0.0001
KCA 1 9341 5.08 0.0296
SUMDIF 1 45253 24.62 0.0001
PGMEXP 1 26888 14.63 0.0004
JCLEXP 1 47236 25.70 0.0001
MAJCOM 4 82698 11.25 0.0001

PARAMETER ESTIMATE

INTERCEPT 64.300
STLOC 0.138
KCA -20.187
SUMDIF -33.378
PGMEXP 19.730
JCLEXP -39.567
MAJCOM F 115.751
MAJCOM J 16.089
MAJCOM S -64.195
MAJCOM T 29.444

9O

also a slight increase in the model F value, from 12.7 to 13.7. The

coefficients of the variables, common to both models, have the same

signs and approximately the same magnitude. Since the intercept is

almost exactly the same, it is apparent that the MAJCOM has replaced

the combined effect of PTYPE and C68EXP. By reviewing the MAJCOM

coefficients, one can see real differences in productivity among the

organizations suggesting agreement with researchers who exposit the

inclusion of organization in productivity research. The fact that

the original LOCPERHR model appears equally adequate with this

revised model, leads one to choose the original LOCPERHR model as the

preferred model for continuing the analysis.

Model Validation

Montgomery and Peck list two basic validation procedures that could

be applied to this work[Montgomery and Peck, 1982]. One, collecting

fresh data to investigate the model's predictive performance could be

done as future work when more data is available but is not feasible

at this time. The second, data splitting, has various ways of being

applied. The most common data splitting technique is setting aside

some of the original data and using these observations to investigate

the model's predictive performance. Since the sample was not very

large, this technique was not feasible; however, the prediction error

sum of squares or PRESS statistic may be considered as a form of data

splitting. To calculate PRESS, an observation i is deleted and a

regression model is fitted to the remaining n-l observations using

91

the resulting equation to predict the withheld observation dependent

variable, say yi Denoting this predicted value yhati, one can

calculate the prediction error for point i as ei = y, - yhat. Then

the PRESS statistic is defined as the sum of squares of the resulting

"deleted residuals":

n 2
PRESS = E e.

i=l I

The GLM procedure calculated the PRESS statistic for the model with a

value of 143986. Montgomery and Peck suggest an R2 for prediction to

validate the model results:

PRESS

Prediction Corrected Sum of Squares

For the LOCPERHR model,

2 143986

Prediction= 1 14396= 1 - 0.476 = 0.524
302602

Therefore, one could expect this model to "explain" about 52.4

percent of the variability in predicting new observations, as

compared to the 74 percent of the variability in the original data

explained by the least squares fit. The difference points to the

great variability of the raw data indicating that though the model

may be adequate, additional sample data would be useful for further

regression analysis and model enhancement.

Wolberg's model for productivity in terms of lines per day was

used to calculate productivity in an attempt to determine an R2 for

prediction for comparison with the validation results above[Wolberg,

92

1983). Assuming 7.88 hours per day(Wolberg uses 173.3 hours/month

and 22 days/month), Wolberg's model becomes:

PLH = 0.808 * L
0 .5 3

where PLH is lines of code per hour and L is equal to STLOC. Since

Wolberg's model is based on data over the entire spectrum of the

conversion project, the model was arbitrarily adjusted with a

multiplier based on an assumption that the recoding and unit testing

activities involved 50 percent of the total hours. This required an

adjustment as follows:

PLH = 2 * 0.808 * L
0 .5 3 = 1.616 * L0 .53

Montgomery and Peck suggest the following formula for R2 for

prediction with new data:

n 2
Z (Yi - yhati)

2 i=l
2

RPrediction = 1-
n2
E (y. - ybar)2

i=l

where yhati is the predicted value for yi and ybar is the mean of the

Yi values and the summations are done over the n data points

available.

Wolberg's adjusted productivity model produced an R2 for

prediction of 0.37 when it was assumed that programming activities

were 50% of the original overall time. Adjusting Wolberg's model

with a multiplier of 2.5(assuming programming activities to be 40% of

the original time) produced an R2 for prediction of 0.51. Finally, a

multiplier of 3.33 was used to adjust the model and the R2 for

93

prediction increased again to 0.63. These results seem to indicate

that with certain arbitrary multipliers being applied to Wolberg's

model, one could have a productivity model comparable in adequacy to

the LOCPERHR regression model developed above. However, with only

one parameter in Wolberg's model, much of the variability in the data

may not be captured. This would lead one to continue to give

preference to the LOCPERHR model.

94

CHAPTER VI

SOFTWARE CONVERSION EFFORT ESTIMATION ANALYSIS

Introduction

As evidenced by the literature review presented earlier, little work

has been done in the area of effort estimation associated with

conversion of software. The purpose of the last phase of the

research was to validate the accuracy of significant models or

methods for estimating effort and to develop a model for the

environment under study. The basis for the validation was again the

Air Force Phase IV data.

This particular endeavor required obtaining conversion effort

hours at the system, rather than program, level. As discussed in the

last chapter, there were a couple of program related conversion

activities that were reported at the system level, or not reported at

all. Thus, the two leading Phase IV organizations, the Air Force

Data Systems Design Center (AFDSDC) and the Tactical Air

Command(TAC), were contacted for additional data. These two

organizations, being almost 100% complete, were thus able to provide

more accurate system level effort data for this analysis. The data

included the number of hours, number of programs and LOC for each

system completed and is provided in Table 9.

The approach to the study involved the formulation of some basic

assumptions needed for the detailed specification of the models to be

used. All the models were converted to the uniform basis of hour

95

Table 9. Phase IV System Level Effort Data.

Nr. of
MAJCOM System LOC Programs Hours

O AX 1985 2 940
0 BK 8632 6 1396
0 CB 1484 1 642
O EB 7571 8 1004
O IE 6918 5 1017
O IN 37873 11 2793
O LY 7506 8 1062
O QP 19000 13 1832
O SF 4360 1 1051
O ZG 48227 39 5268
0 ZP 2042 3 856
T CO 13910 7 1078
T EC 717 1 149
T KV 982 2 225
T MQ 530 1 217
T OT 6325 2 641
T OZ 33635 22 2375
T QF 1463 1 448
T WE 17156 7 1112
T WL 1569 3 408

estimation, rather than man-month or day estimation. Using data

known prior to the conversion(STLOC and number of programs), effort

hours required by each system were estimated by each model. These

hours were compared to the actual hours and the R2 for prediction,

average squared prediction error(comparable to the mean square

error), and average residual(average deviation of actual hours minus

predicted hours) were calculated to measure accuracy. The objective

2
is to obtain a relatively high value(close to 1.0) of R for

prediction, an average squared prediction error that is as low as

possible and an average residual that is relatively close to zero.

96

Since R2 and the average residual both have specific numeric goals,

they were of primary interest in the analysis. Some tuning of the

models was performed and the process repeated. Finally, regression

analysis was used to develop a model for the Phase IV environment.

The glossary contains definitions of statistical terms which may be

helpful in interpreting results.

One assumption made in transforming models to hour estimation

was to use eight(8) hours per day and 22 days per month if no hour

figures were provided by the model developer. Since only the effort

involved in recoding, including related testing and documentation

etc., was of interest, only the applicable parts of models providing

for other activities were used for this research. The measure of the

documentation status, required by some of the models, is assumed to

be 90% which seemed appropriate for Phase IV. Other assumptions made

for specific models are discussed in the applicable sections of this

chapter.

Respecification of Effort Estimation Models

The following models were studied for accuracy: FCSC, Hahn and Stone,

Grim, Epler and Andrus, Wolberg, and Basili and Freburger[Federal

Conversion Support Center, 1982c; Hahn and Stone, 1970; Grim, Epler

and Andrus, 1978; Wolberg, 1983; Basili and Freburger, 1981]. The

model suggested by the AFASPO is just a slightly modified version of

the Hahn and Stone model so it is not included here[Air Force

Automated Systems Project Office, 1982a]. The Basili and Freburger

!

97

model is the only one not developed for conversion effort estimation.

Details of the models are included in Appendix A.

FCSC Cost Model

The FCSC model was developed for the total coverage of a project,

from planning to final implementation[Federal Conversion Support

Center, 1982c]. Only those portions of the model specifically

related to a programmer's conversion efforts were used. The first

function specified in the model that is applicable to this work is

that of test data generation. As stated in the model, if the

percentage of code the test data is required to exercise equals the

percentage of code the test data exercised in the original

environment, then about one day per program(E TD) is necessary to

validate and transfer data.

For the function of application program and system software

conversion, a complexity class must be initially chosen. Class 4,

simple syntax translation, appeared to be the best choice for Phase

IV. This class provides the design effort(DE) parameter of 1, the

programming effort(PE) parameter of .5 and the testing effort(TE)

parameter of 2. The documentation status(DOC) for Phase IV was

assumed to be .9. The FCSC baseline productivity rate(BR) of 12.7

LOC per day for new development and the measure of total effort(NDE)

for new development(100) were also used to calculate the manual daily

conversion productivity rate(MCPR):

BR*NDE
MCPR =- ------------------------------------

[(1.0 - (DOC/2))*DE] + PE + TE

98

12.6*100
MCPR = -

[(1.0 - (.90/2))*1] + .5 + 2

MCPR = 413

Then, using the FCSC assumed automatic translator daily conversion

productivity rate(ACPR) of 630 LOC, the percentage of code typically

translated(T) automatically for Phase IV programs(90%), and STLOC to

represent the starting lines of code, the effort required for

application program and system software conversion(Esw) may be

calculated as:

STLOC(1 - T) STLOC*T
E-S -----------------------ESW +

MCPR ACPR

STLOC(1-0.9) STLOC*.9
E =-+ 413 630

E = 1.67*STLOC*10
- 3

SW

The function of data file and data base conversion requires the

selection of a data complexity class. Class D, appr-opriate for Phase

IV files, provides a file conversion complexity factor (FCF) of 1.

Since there are no data description or dictionary languages, the

effort for file conversion(E DF) may be calculated as follows:

EDF = (F*FCF)*(1.0 - (DOC/2))
where D

F = numbers of files

The number of files per program or system was not readily available

for inclusion in the FCSC formula. An estimated average number of

files per program was derived from the one source of such information

available. An AFDSDC planning document shows approximately six files

99

per program so 6*P was substituted for the number of files, with P

representing number of programs in the system[Air Force Data Systems

Design Center, 1982]. Therefore,

EDF (6*P*l)*(l.0 - (.90/2))

E = 3.3*P

There is no operation control language or JCL for the B3500

systems which make up the sample, thus the FCSC suggested approach of

using the application program and system software procedure for

estimation does not apply. Since JCL formats are somewhat standard,

an estimate of between one half to one day per program seemed

appropriate for setting up the respective control language;

therefore, three fourths of a day per program was chosen for this

effort(E CL):

ECL = 0.75*P

This appeared to parallel the 5.3 hour(0.66 day) per program average

for Phase IV.

For the function of system testing, it was necessary to again

use the unique AFDSDC data, mentioned above, to determine the average

number of runs(J) per program which was calculated to be two runs per

program. The number of files(F) per program was previously

calculated to be 6. The FCSC assumes about 5 to 10 reruns(RE) are

typically required for conversion testing. For a fairly compatible

environment, an RE factor of 5 seems appropriate. The testing

effort(EST) required for each system can then be calculated:

EST = [(1 + F)/10 + ((P + F + J)/80]*[l + RE/10]

EST = [(1 + 6*P)/10 + ((P + 6*P + 2*P)/80)]*[l + 5/10]

STi

100

EST = 1.069*P + .15

The function of acceptance testing requires the estimation of

the duration(DUR) of the test. A DUR of 1 day per program seems more

than adequate for this environment. Using the average of 6 files

per program(F), calculated above, one can formulate the equation for

acceptance testing effort(EAT) per system as follows:

EAT = [DUR*l/20] + [((P + F)/5)*(l - e(DUR/20))]

EAT = [1*P*1/20] + [((P + 6"P)/5"(l - e-(l*P/20))]

EAT = 1.45*P - 1.4*P*e(P/2
0)

The redocumentation activity formula requires the estimation of

the coordinaktion effort (RCOR) between staff members during

redocumentation. Since Phase IV systems were well documented, FCSC's

typical RCOR factor of 10% seemed adequate. One can calculate the

amount of time(E RD) for programmers to redocument a system as

follows:

En = (P/4 + I)*RCOR*DOC

ERD = (P/4 + i)*.i0*.90

ERD = 0.0225*P + .09

In summary, the FCSC specific model(EFCSC) for estimating

programmer related effort in the Phase IV environment is as follows:

EFCSCDAYS E TD E SW E DF E CL + EST + EAT + ERD

FCSCDAYS = P + 1.67*STLOC*10- 3 + 3.3*P + .75*P + 1.069*P +

.15 + 1.45*P - 1.4 *P*e
- (P/20) + .0225*P + .09

- 1.4*P*e - 20) + 0.24EFCSCDAYS = 7.59"P + l.67*STLOC*l0 -l.*e

101

To convert to effort hours(EFcsC), a multiplier of 8 hours per day

was used to finally produce

E 60.72*P + 13.36*STLOC*l0 - ll.2*P*e- P/ 2 0 + 1.92FCSC

Hahn and Stone or MITRE Model

Hahn and Stone represented the cost of conversion with the three

component costs of program transfer(Cp), data transfer(CD) and other

costs(C)[Hahn and Stone, 1970]. The cost for transferring a program

includes both costs of automatic(C A) and manual(C M) translation.

Only the process for computing manual translation costs are further

defined. The main element is a formula for calculating the total

number of man-days required (MDT). Several parameters must be

defined before the MDT formula may be used. Since no modifications

are allowed during the conversion of Phase IV programs, D = 0 and

since there are no subprograms defined then D = 0. The

documentation status factor(DF1) is one minus DOC of the FCSC model;

in other words, since DOC = .9, D .1. For the COBOL translation
Fl

environment, recoding is measured with R = 29 and testing with RBT

= 18.3. The formula also requires a statement of the LOC to be

manually transferred(I) and this may be defined as .l*STLOC for the

Phase IV environment in which is used a 90% effective automatic

translator. Therefore,

MDT = I/RBC + (DFI*I/RBc) + (DF2*I/RBC) + I/RBT + (DF3*I/RBT)

becomes

102

.l*STLOC .1*(.l*STLOC) .l*STLOC
MDT = +-+-------- -------- ---------

29 29 18.3

4.9*STLOC

MDT =----------
530.7

Using the FCSC estimate of 630 LOC per day for an automatic

translator, the automatic translation time(ADT) may be calculated

with:

.9*STLOC
ADT =---------

630

Therefore, the total effort hours(EHS) required for program

conversion can be defined as:

EHS =(MDT + AD T)*8

8*4.9*STLOC 8*.9*STLOC

E -HS--+
530.7 630

E = .0853*STLOC

This formula must be supplemented with some factors to account for

the CD and C costs that are not further defined by Hahn and Stone.

The additional effort estimates for test data generation and

validation, file conversion and redocumentation were included. The

FCSC estimates were used as a basis for defining these supplemental

hours required. For test data generation, the FCSC estimate of 1 day

or 8 hours per program(P) was used. Since Hahn and Stone

specifically state that file or data conversion costs are typically

small in comparison to program conversion costs, one-half of the FCSC

estimate of 3.3 days per program was used. This results in 1.65 days

or 13.2 hours per program. Since the FCSC estimate for

103

redocumentation seems too small, a factor of .5 days or 4 hours per

program was selected. The total supplemental hours used were:

8*P + 13.2*P + 4*P = 25.2*P

Thus, EHS finally becomes:

E = .0853*STLOC + 25.2*P

Grim, Epler and Andrus Model

Grim, Epler and Andrus present a formula for computing the conversion

programming cost in man-days(M)[Grim, Epler and Andrus, 1978]. This

principal element of their model requires the definition of three

parameters: the translator effectiveness(T) which is again assumed

to be 90%, the documentation status (D), assumed to be .90, and the

daily LOC conversion rate(R) of an average programmer set at 30 as

suggested by the model for COBOL to COBOL translations. Therefore,

2*STLOC(i -T)
M=

R*(1 + D)
becomes

2*STLOC(l - .90)
M ---------

30*(1 + .90)

M = 0.00351*STLOC

It is assumed by the model that automatic conversion(A) is minimal

and therefore not included. However, to provide a uniform basis for

comparison, the FCSC estimate for automatic conversion was also used

here:

.9*STLOC

A---------
630

A = .00143*STLOC

104

Therefore, the total effort hours(EGEA) were computed as follows:

EGEA = (0.00351*STLOC + .00143*STLOC)*8

E = 0395*STLOC
GEA *

This formula was also adjusted to include relevant supplemental

factors. Since data conversion costs using the model's suggested I/O

unit cost approach can not be easily computed for Phase IV programs

and to provide for uniformity, the same supplemental estimates used

with the Hahn and Stone formulation were used here. The adjusted

model is then:

E = 0395*STLOC + 25.2*P

Wolberg Model

Wolberg developed an effort estimation model for recoding based on

nine very large projects which included time for all activities from

planning to implementation[Wolberg, 1983]. This model produces

person-month(E) estimates based on thousands of lines of code(L):

E = 7.14*L
0 .47

For uniformity, the model was adjusted to estimate hours by

multiplying by 173.2 which is Wolberg's estimate of person-hours per

person-month. This results in the following estimate of hours(E w):

EW = 1237*L
0 .47

To use the same basis of STLOC, the model became:

EW = 1237*(STLOC/1000) 0.47

or EW = 48.12*STLOC0 .4 7

tw

105

Since E results in estimates for the entire time spent by all the

staff of a conversion project, an arbitrary factor of 50% was used to

adjust the estimate to produce an estimate for programmer related

tasks only. Thus, for comparison with other models the following is

used to represent Wolberg's approach:

EW = 24.06*STLOC
0 .47

Basili and Freburger Model

Basili and Freburger developed various models for new development

efforts[Basili and Freburger, 1981). One of the models uses the

concept of developed lines(DL) which is defined to equal the number

of new lines plus 20% of the reused lines. This model was considered

to 'De possibly applicable in the conversion realm if reused lines are

defined to be those converted by the automatic translator and new

lines as those that require manual recoding. Since DL is defined in

terms of thousands of LOC and a 90% effective translator is used:

.I*STLOC .20*.9*STLOC
.DL = -

1000 1000

DL = 2.8*STLOC*10
- 4

Basili and Freburger produced a linear fit using DL and

generated the following model:

E = 1.46*DL
0 .9 8

where E is measured in person-months. This estimate was changed to

hours by multiplying by 173.33 which is assumed in the model, to be

the number of person-hours per person-month. Substituting the

106

expression for DL derived above, an estimate of effort hours(EBF) can

be calculated as follows:

E 1.46*(2.8*STLOC*10- 4)0.98-173.33
BF *73

EBF .0835*STLOC
0.98

Validation of Existing Models

The models defined in the previous section were used to predict

effort hours which were then compared to the actuals by means of

Re2 (the percent variability in the data explained by the
Prediction

model), the average prediction error(average deviation in hours) and

the average squared prediction error, which is comparable to the

residual mean square (assumed to measure the average variance of the

residuals from the fit)[Montgomery and Peck, 1982).

Measurement of Accuracy of Basic Models

Table 10 lists the effort estimation models that were used to predict

effort hours for comparison with the actual hours. The

validation/accuracy measures of the models are shown in Table 11. It

was quite surprising to see that the Hahn and Stone model, which was

2
suggested for use within Phase IV, exhibited the highest R , the

lowest average squared prediction error and an average prediction

error with the lowest absolute value. The highly parameterized FCSC

model had, surprisingly, the worst performance. This could be

attributed to errors or incorrect assumptions made during the

formulation of the Phase IV specific equation; however, a review of

the process revealed no apparent problems.

107

Table 10. Summary of Conversion Effort Estimation Models.

EFCSC 60.72*P+13.36*STLOC*10-3_11.2*P*e-(P/20) +1.92

EHS =0.0853*STLOC+25.2*P

EGEA =0.0395*STLOC+25.2*P

Ew =24.06STLOC
0 .4 7

EBF =0.0835*STLOC
0 .98

Table 11. Validation/Accuracy Measures of Basic Models.

2 Average Average Pred.
Model RPred Squared Pred. Error Error(Hours)

EFCSC 0.440 729236 680.72

EHS 0.841 207681 99.18

EGEA 0.538 602174 607.30

Ew 0.671 428055 -380.53

EBF 0.685 408372 465.94

It is interesting to note that the Basili and Freburger model

ranked second in terms of R2 and the average squared prediction

error. The concept of developed lines seems to have some

applicability in the conversion area when code manually recoded is

substituted for new code and code automatically translated is

substituted for reused code. The Wolberg model was the only one that

resulted in a negative average prediction error indicating that the

predicted hours were generally higher than the actual hours. The

108

Grim, Epler and Andrus model had the second worst performance and

since it resembles the structure of the Hahn and Stone model but with

a smaller coefficient of STLOC it was not considered for further

refinement and analysis. The FCSC model was also considered to be

too inaccurate for this context with an R2 of 0.44 and a large number

of estimated parameters so it was not studied further.

To present a pictorial view of the behavior of the basic effort

estimation models, a hypothetical system of 8 programs with a varying

number of lines of code was used for making estimates with the

models. Figure 3 contains the overlaid plot of the five models.

Each is represented with the first character of the model's name.

Notice that the FCSC(labeled F in the plot) model and the Grim, Epler

and Andrus(labeled G) model produce estimates that are much lower

than those of the other models.

Analysis of Refined Models

Only the Hahn and Stone, Wolberg, and Basili and Freburger models

were considered for further refinement and analysis as discussed

above. Though the average squared prediction error for the Hahn and

Stone model was significantly less than that of the other models, it

was still somewhat large in magnitude. Attempts were made to reduce

this error and increase R2 for all three models.

First, the Wolberg model results were reviewed. Since, on the

average, the model estimates were higher than the actuals, it was

decided to reduce the arbitrary percentage of programmer related time

109

SAS

35001

3250-

3000- -

2750

NN

N 5

N aN

2250 N

N N

NN

2000- N N

0O0 SH N N I

R N B

1500 "

Soo

S 0

20050 0 0N N 50 0 200 250000 50 00

LIE OF CODE

Ne 3

N 8
0

N $

750 , ' '

.5:1 .N

0 5000 10000 15000 20000 25000 30000 35000 40000

LINES 0F CODE

Figure 3. Plots of Estimates of Basic Models for a Small System

110

from the 50%(reduction of time) of the original model which included

time for the entire project, from planning to implementation. Three

refinements, with 30, 35, and 40 percent, were attempted. The model

which assumed 40% of the overall time, for programmer related

functions, demonstrated the best results:

Revised EW Model: 19.25*STLOC
0 .47

R2 Avg.Squared Pred. Error Avg. Pred Error

0.742 335932 -59.42

Though R2 was increased and the average prediction error was

decreased, the average squared prediction error is still relatively

high. The data used for development of the original Wolberg model

was very different from that of Phase IV so better results than these

would be unlikely.

The Basili and Freburger model which performed remarkably well

in the basic analysis was adjusted by modifying the equation for

calculating the number of developed lines. The original equation

called for summing the new code plus 20% of the reused code. This

produced the model used in the comparisons of the previous section.

It was decided to try various percentage factors to calculate the

overhead associated with reused code, or in this case, with code

translated by the automatic translator. The original performance

measures showed that the model estimates were normally lower and thus

percentages higher than 20% were required. Adjustment percentages of

40, 35, 30, and 25 were used for comparison. The 30% overhead factor

produced the best results as follows:

111

Revised EBF Model: 0.1097*STLOC
0 .9 8

R2 Avg. Squared Pred. Error Avg.Pred. Error

0.823 229995 227.54

These results were better than expected with R2 increasing to a very

adequate level and the average prediction error decreasing

considerably. However, the fairly large average squared prediction

error indicates the existence of some large residuals. The predicted

hours are much better estimates of the actuals than the average of

the actual hours; i.e., the total sum of squares about the mean is

much larger than the average squared prediction error. This results

2
in an apparently commendable R

The Hahn and Stone model had the best overall performance in the

initial analysis. Even after improving the results of the next best

models, Wolberg and Basili and Freburger, the Hahn and Stone model

continued to exhibit better performance. One parameter that this

model uses that is not present in the other two models is that of the

documentation status. It was decided to test the sensitivity of the

model results to the documentation status used by Hahn and Stone(see

Appendix A) by changing the status from .l(very good documentation)

to .25(good documentation). The coefficient of STLOC changed from

0.0853 to 0.0896. The second term of the model(25.2*P), developed by

using FCSC model criteria, was not initially modified. The results

of this revised model indicated a decrease in R2 and an increase in

the average squared prediction error. Though the changes were not

great, the results demonstrated that a documentation status of .1 was

most appropriate.

112

Another element that makes the Hahn and Stone model different

from the Basili and Freburger and Wolberg models is the presence of a

term which attempts to capture the effort involved in tranferring

data and in other activities. With the coefficient of STLOC set at

its original value of 0.0853, several different coefficients of

P(number of programs) were used to determine their impact on the

model's performance. All of the coefficients greater than the

original value of 25.2 degraded the model's performance while only a

couple of lower valued coefficients provided a slight improvement.

The model with the best R2 and the lowest average squared prediction

' error was the following:

Revised EHS Model: 0.0853*STLOC + 20*P

R2 Avg. Squared Pred. Error Avg. Pred. Error

0.845 201816 136.36

Though providing a slight improvement in results, this model ranks

about equal with the original model because there is an accompanied

increase in the average prediction error.

Development of Models With Regression Analysis

The availability of Phase IV system level effort data presented an

excellent opportunity to develop models specific to the Air Force

environment. One model of exponential form, similar to that of

Wolberg and Basili and Freburger, was developed. A second model of

additive form, such as that of the Hahn and Stone model, was also

constructed.

113

Exponential Form Effort Model

The first regression model developed produced an R 2of 0.844 which is

about the same as that of the Hahn and Stone model. The resulting

parameters formed the following equation for predicting effort

hours(E AFx):

EAFX = 5.55*STLOC
0 .591

Since logs of the actual hours and the lines of code were used

to build the model, it is difficult to compare the resulting mean

square error(MSE) with previous average squared prediction errors.

However the model's F value of 97.69 is several times the size of the

critical F value of 4.14 indicating model adequacy and predictive

value(Draper and Smith, 1966]. The residual plot demonstrated an

adequate scatter of the points around zero thus contributing to the

assessment of an adequate model. The prediction error sum of squares

or PRESS statistic, as discussed in the previous chapter, was used

for partial validation of the model as follows:

2 PRESS
R Prediction 1

Corrected Sum of Squares

2 2.86663
Prediction 14.69262 = 0.805

This result indicates that this model could be expected to explain

about 80 percent of the variability in predicting new observations,

as compared to the 84 percent of the variability in the original data

explained by the least squares fit. The "loss" in R2 for prediction

is very slight indicating model adequacy.

114

Additive Form Effort Model

The additive model was developed with starting lines of code(STLOC)

as well as number of programs(P). The resulting equation for

predicting effort hours(E AFA) was as follows:

EAFA = 309 + 0.0390*STLOC + 67.76*P

This model produced the highest R 2(0.928) of the effort estimation

analysis indicating that 92.8% of the variability of the actual hours

is explained by the model. The model's F value of 109.36 was even

higher than that of the exponential form model. The mean square

error(MSE), 110520, was lower than the average squared prediction

error of all of the existing models studied above. The PRESS

statistic was computed again and used with the corrected sum of

squares to calculate a prediction R2 for partial model validation:

2 6162413
RPrediction = 1 - --------- 0.763

26051370

This model could be expected to explain about 76% of the variability

in predicting new observations(compared to 80% of the exponential

form model), as compared to the 92.8% in the original data explained

by the least squares fit. The "loss" in R2 for prediction is greater

than that of the exponential model; however, model adequacy is still

upheld. Though the residual plot demonstrates an adequate spread

around zero, a couple of "distant" points reveal the variance which

contributes to the lower R2 for prediction.

115

Final Comparison of Models

Using the same hypothetical case used earlier, the refined Wolberg,

Basili and Freburger, and Hahn and Stone models were plotted along

with the two regression models. Figure 4 contains the plots of the

five models with the exponential form model represented by "I" and

the additive form model represented by "2" while the other models are

again represented by the first letter of the model's name. Notice

that all the models operate within a much closer framework. The

additive form model(labeled 2) depicted the highest R2 when regressed

against the Phase IV data.

In order to provide a further evaluation of the two regression

wodels, the models were assumed to be developed independent of the

data and were both used to predict hours for comparison with the

actuals, as was done for the validation of existing models. The

exponential(EAFX) model produced the following results:

R2 Avg.Squared Pred. Error Avg. Pred. ErrorPred

0.791 271700 69.81
The performance of the additive(E AFA) regression model appeared to be

somewhat better as indicated by the measurements:

R2 Avg.Squared Pred. Error Avg. Pred. Error
Pred

0.928 93943 -0.460

The average prediction error is very close to zero which means that

the model seems to produce approximately unbiased

predictions[Montgomery and Peck, 1982]. The additive model appears

to be a better predictor of effort hours. A numerically simpler

116

SAS

3500.
I

3250-
I

3000-
I1

NN

2750- '

2500 ,

N y

2250-
3' 2

U 3

2000 - 2

H • a- 2

0 5 2
U 1750, , 2
R 2

S -

1250 * 1 S I

10000

• 2

1250 2
.

250~

2 N

700 2 "a
• W

7500 S. 1
a

250.

0 5000 10000 15000 20000 25000 30000 35000 4000C

LINES OF CODE

Figure 4. Plot of Refined Models and Regression Developed Models

117

version of the additive model was validated with the objective of

producing a model with greater usability. The following simpler

model:

E = 300 + .039*STLOC + 70*PAFA

demonstrated the following performance:

R2 Avg.Squared Pred. Error Avg.Pred. Error
-red

0.928 94422 -7.48

The accuracy of the simplified model is only slightly different from

that of the original additive model. Therefore, it is well suited

for this environment. Further validation of these models could .e

done as future work when more data is available.

Organizational Impact Model

One last step in the analysis evaluated the impact of the

organizational factor. The additive form model was extended to

include a categorical variable(MAJCOM) and the GLM SAS procedure,

with MAJCOM defined as a CLASS variable, was run to develop the model

and measure its adequacy. Table 12 demonstrates the results of the

regression analysis including the model coefficients. Notice that

this model produced the highest R 2(0.968) of all the models

investigated. The model F value is very large and several times more

than adequate. The mean square error is, by far, the lowest value

encountered in the analysis. All the parameters are significant at

least at the 0.0004 level. The coefficients of STLOC and P changed

very slightly from the basic additive form of the previous section.

118

Table 12. Organizational Impact Effort Model

DEPENDENT VARIABLE: HOURS

SOURCE DF SUM OF SQUARES MEAN SQUARE

MODEL 03 25210438 8403479
ERROR 16 840932 52558
CORRECTED TOTAL 19 26051370

MODEL F PR > F R-SQUARE C.V. HOURS MEAN

160 0.0001 0.968 18.7 1225.7

SOURCE DF TYPE III SS F VALUE PR > F

STLOC 1 1053990 20.05 0.0004
P 1 1087373 20.69 0.0003
MAJCOM 1 1037910 19.75 0.0004

PARAMETER ESTIMATE

INTERCEPT 88.8398
STLOC 0.0399
P 61.1284
MAJCOM-O 468.1244

However, the organizational influence in the model became clearly

visible when a coefficient of 468.1243 appeared for the case of

MAJCOM being AFDSDC. This difference could possibly be attribited to

the more complex and larger systems converted by AFDSDC or because of

insufficient attention having been given to conversion planning and

preparation.

A partial validation of the model, with the PRESS statistic,

revealed:

2 PRESS 3525349
Rpred = 1 -------------------------- = 1 --------- = 0.865Corrected Sum of Squares 26051370

This value of R2 reflects a slight loss which indicates that the

linear fit explains a greater percentage of the original data;

119

however, the model is quite adequate. The residual plot showed a

good scatter with only one point somewhat distant from the rest.

Another adequacy test was to assume the model's independence from the

data and determine predicted hour values based on the data. This

produced the following:

R2 Avg.Squared Pred. Error Avg. Pred. Error
Pred

0.968 42047 -0.3061

The high accuracy of the model reveals that the organizational factor

is a significant element of effort estimation.

120

CHAPTER VII

SUMMARY AND RECOMMENDATIONS

Introduction

Overview of Work Accomplished

The work performed in this research parallels the objectives and

procedures originally formulated. A two-phased skeletal methodology

was initially conceived for the study of software conversion data.

Each of the phases, productivity analysis and effort estimation

analysis, was subjected to close scrutiny with a keen eye on new

software development research, since software conversion research was

found lacking. Specific sets of procedures and statistical analyses

were formulated for each of the phases of the study. This gave life

to a methodology for conversion data analysis which permitted a

careful study of conversion productivity and effort estimation by

means of a case study of Air Force Phase IV conversion data from

organizations in different locations working on unique and

independent systems.

Program and programmer attributes became dependent variables as

their impact on programmer productivity was analyzed. Models for

explaining productivity were constructed and the impact of

organization was also considered. Existing applicable software

conversion effort estimation models were validated for accuracy using

the Phase IV data and environment specific regresssion models were

constructed.

121

Significance of Research Outcomes

This research benefits the computer community since a methodology for

conversion data analysis was formulated. Also, an analysis of

conversion productivity and a study of conversion effort estimation

models were lacking. Most of the work accomplished fits within the

general framework of measurement studies. One of the goals of the

STARS program in the measurement area is to encourage the development

and refinement of measures and models[Dunham and Kruesi, 1983].

Coincident with this goal is a suggestion that this activity be

carried out within the context of on-going software projects. This

research not only fulfilled this goal of STARS, but it was also

conducted within the context of the on-going Phase IV software

conversion project. A conversion programmer productivity case study

had not been previously conducted on this scale. This research

generated a productivity model and a cost or effort estimation model

for the Phase IV environment which may be applicable to other

environments with small systems written in a high level language and

being converted to a highly compatible high level language and

operating within a multi-location government organizational

structure. A validation of these models can be accomplished as

future work when more data becomes available.

Summary of Methodology Formulated

The methodology for the analysis of conversion programmer

productivity and effort estimation emerged from the selection of

appropriate statistical techniques used throughout this study. One

122

of the primary techniques employed was that of regression analysis

which is one of the most widely used techniques for analyzing

multifactor data(Montgomery and Peck, 1982]. The methodology is

naturally based on two separate and distinct phases which encompass

the analysis associated with each of the two aspects of software

conversion chosen for this research.

The first phase of the methodology is the study of conversion

productivity. The five steps which provided the framework for this

phase were:

1) collect and prepare raw data on programmers and programs,

2) perform preliminary analysis of data,

3) construct appropriate file of programmer and program data

elements,

4) build productivity model for exploratory analysis, and

5) perform model validation.

The second phase of the methodology is the study of conversion

effort estimation. This phase also has five steps and parallels the

first phase:

1) collect appropriate effort data,

2) select conversion estimation models,

3) produce effort estimates and compare to actuals,

4) build effort estimation models for specific environment, and

5) perform model validation.

123

Productivity Methodology

The first step of the methodology for studying conversion

productivity was the collection and preparation of raw data. One set

of data required was that of programmer resumes and the other set

consisted of program information. Some programmer qualitative

attribute data was provided in a form unsuitable for data entry and

manipulation. Therefore, an encoding scheme was devised and applied

to the data. A data entry process was selected and the data was

keyed into two separate data files.

The second step of the methodology was an elementary analysis of

the separate data files. Programmer qualitative variables were

tested to determine pair-wise associations. An examination of the

correlation between the programmer quantitative variables was also

conducted. A productivity measure(LOCPERHR) and a program difficulty

measure were calculated from the program information data. Tabular

summaries were prepared and a variety of elementary statistics were

calculated.

The third step of the methodology was the formation of a new

file which included all the programs converted by only one

programmer. The attributes of the programmer from the programmer

file were also added to each record of this new file, called the

individual productivity file. This file provided the basis for

continuing the analysis.

The fourth step of the methodology was that of variable

selection and model building with the individual productivity file.

124

Multicollinearity, duplication of a variable, inadequacy of data, and

simplicity were used as criteria for candidate variable selection.

The selected qualitative and quantitative variables became

independent variables with LOCPERHR as the dependent variable.

Regression analysis was initiated with this candidate set of

variables. Variables found to be insignificant in the model were

eliminated. The adequacy of the final model was checked by means of

2R , residual analysis, and reasonableness of the resulting equation.

The resulting model parameters and the significance of their impact

on productivity were discussed. Also, the impact of the variable of

organization was studied by adding it to the model and reinitiating

the regression analysis.

The fifth step of the productivity methodology was that of model

validation. This typically requires the collection of new data.

Since no additional data from the Phase IV program was presently

available, a secondary form of validation, data splitting, was used.

The prediction error sum of squares(PRESS) statistic, a form of data

splitting, was determined and applied to the resulting model.

Effort Estimation Methodology

The first step of the methodology for studying conversion effort

estimation is the collection of appropriate effort data. System

level effort data which included effort hours, lines of code, and

number of programs for each system was collected. A designator for

the organization converting each system was also provided.

125

The second step of the methodology was the selection of

conversion effort estimation models of interest. After a review of

the literature, existing significant models were chosen. These

models were studied individually and then represented by an

estimation equation reflecting the characteristics of each model in a

form suitable for using the collected data.

The third step of the methodology was the application of the

data to the models to produce estimates for comparison. The average

2hour deviation(predicton error) and R were used to evaluate the

accuracy of estimated hours as compared to the actual hours. The

three ibest models were selected for further study. The three

equations were fine tuned in an attempt to improve their performance

when compared to the actuals.

The fourth step of the methodology was the construction of

effort estimation regression models based on the collected data. Two

environment specific models were constructed. One model was built

using an exponential form and the other an additive form. The impact

of organization was studied by including it as a variable in the

additive form model and reinitiating the regression analysis.

The fifth step of the effort estimation methodology was the

validation of the models. Since no new Phase IV data was presently

available, the prediction error sum of squares(PRESS) statistic, a

form of data splitting, was used for model validation.

126

Summary of Productivity Analysis

The regression analysis performed on the productivity data resulted

in the formulation of a model for explaining the productivity of

programmers within the context of program attributes. The results of

the productivity analysis are true for the sample data of the Phase

IV environment but no conclusions may be drawn about other conversion

environments.

The statistical analysis revealed that there is a slight

increase in productivity as the starting lines of code increase.

This parallels the results of Paulsen who found the same relationship

in the development of products with a high level of reused

code[Paulsen 1981]. Only conversions like Phase IV with a high

percentage of code automatically translated may possibly experience

this phenomenon. An explanation for this behavior may be that the

fixed overhead effort is dominant when most of the code is translated

automatically. This implies that as the numerator of STLOC

increases, the denominator increases only slightly and thus the

quotient of LOCPERHR increases. This phenomenon may not extend to

Phase IV programs greater than 5000 lines which are outside the range

of the case study sample and it definitely does not extend to Phase

IV conversions that are not COBOL-68 to COBOL-74. As the complexity

or difficulty rating of a program increases there is an accompanying

decrease in productivity, as expected.

An interesting manifestation, supporting a discovery by Oliver,

was exhibited by the rating of a programmer's knowledge of a

127

program[Oliver, 1978). Oliver stated that programmers converting

their own programs may not resist the temptation to "improve" the

program they convert. This thesis indicates that productivity

decreased somewhat as the individual's knowldege of a program

increased; therefore, knowledge of a program seemed to be

unfavorable. This counter-intuitive phenomenon may not apply to

other conversion environments and the result may change as the Phase

IV conversion progresses. The finding suggests that programmers with

greater knowledge of a program tend to perform unauthorized

modifications or enhancements during the conversion process either

for personal reasons or as directed by local management.

It is interesting to note that programmers who classified their

experience as primarily of the development type exhibited higher

productivity than maintenance type programmers or programmers with

both development and maintenance experience inferring that

development type programmers had the greatest depth of experience.

This may not be true in private industry or other environments. The

data shows, what may be common in many organizations, that the

inexperienced programmers typically start out in maintenance. The

programmer type variable was the only categorical(qualitative)

variable to remain in the final LOCPERHR model. The influence of

academic degree and major were found to be insignificant in the

initial model formulation.

The results indicate that, within the Phase IV environment,

experience with the source language(COBOL-68) is more important than

experience with the target language(COBOL-74). In fact, the sample

128

data produced a model for productivity which completely eliminated

COBOL-74 experience. General programming experience also had a

positive impact on productivity paralleling other studies which

indicate that productivity increases with experience.

The JCL experience variable revealed a peculiarity in the data

which probably only exists in this environment. In most cases the

JCL experience included primarily academic experience for junior

programmers or programmer trainees. This was discovered during the

preliminary analysis showing that JCL experience for intermediate and

senior programmers in Phase IV was typically nil since there is no

JCL for the B3500 environment programs. Therefore, the JCL

experience in the data is almost all for entry level programmers and

thus produces a negative impact on productivity. JCL experience is

really more of an indicator for an entry-level programmer and nothing

else.

When a programmer's organization entered the regression

analysis, the results indicated support of the findings of

Lawrence[1981] and Jeffery and Lawrence[1979] which state that the

organization has an impact. Even in the context of well-defined

procedures within the Air Force Phase IV Program, one organization

demonstrated a productivity which was on the average about 150 lines

of code per hour higher than that of another organization. Upon

entering the o-ganization variable in the final model, the programmer

type and COBOL-68 experience variables were found to be

insignificant. This indicated that the organization variable

129

replaced the combined effect of these two variables. The results

point out that the productivity of organizations varies even within

the context of the same industry as discovered by Lawrence.

The alternate productivity model of "cost units" or hundreds of

lines of code per hour and the alternate model of the log of lines of

code per hour both resulted in a similar set of explanatory or

regressor variables. The most significant difference between these

models and the basic or primary lines of code per hour model was the

presence of the variable MAJOR which replaced the general programming

experience variable. Both alternate models indicated that, within

the Phase IV environment, programmers with computer science, data

processing-MIS, or mathematics/engineering education were more

productive than programmers in the category of other academic majors.

Summary of Effort Estimation Analysis

Five effort estimation models compatible with the software conversion

arena were validated for measurement accuracy. It was surprising

that the Hahn and Stone model, suggested for use by the AFASPO in

Phase IV, exhibited the best performance. The Basili and Freburger

model, based on the concept of "developed lines of code",

demonstrated its applicability to software conversion with acceptable

performance. Though the Wolberg model was based on hour data for

entire projects, a model assuming 50% of the effort for programmer

related activities revealed fairly adequate results. The new FCSC

model manifested low accuracy in comparison to the other models. The

130

correct usage of the FCSC model was insured by double checking its

application. It is apparent that the FCSC model requires some

additional study for environments of the Phase IV variety: high

level to high level language conversions, good documentation and

fairly compatible source and target environments. Though only one

FCSC conversion class was examined in this research, the results

indicate that a recheck of the other model classes may be in order.

The Hahn and Stone, Wolberg, and Basili and Freburger models

were subjected to various tuning modifications aimed at improving

their performance, within the Phase IV environment. The Wolberg

model never rose above an R2 of 0.74 while the Basili and Freburger

model reported an R2 of 0.823 when a 30% overhead factor for reused

code (code translated automatically) was applied. The Hahn and Stone

model demonstrated its best performance with an R2 of 0.845 when a

coefficient of 20 hours was used with P(number of programs).

Two regression models for the Phase IV environment were built

using the data provided. The first model, of exponential form,

resulted in an R2 of 0.844 and exhibited traits of model adequacy.

However, the additive form model which used both STLOC(starting lines

of code) and P(number of programs) demonstrated an R2 of 0.928. The

2,R for prediction for the additive model manifested about a 16%

"loss", thus about 76% of the variability in new observations could

be explained with the model. Suspecting an organizational factor of

significance, another additive form model was developed using MAJCOM

as a CLASS variable in the SAS GLM procedure. The resulting equation

131

exhibited an R2 of 0.968 and showed that one organzation, the AFDSDC,

added almost 500 more hours to the predicted effort value. This

again indicated a significant organizational impact. This large

difference in the organizations could originate from the possibly

larger and more complex systems converted by the AFDSDC or from

insufficient pre-conversion preparation.

Management Considerations

It is imperative that further studies in this area be conducted to

increase the community's understanding of the subject of conversion

and to improve management's awareness of problems and opportunities. 6

The foundation for these efforts is a data base supported by an

effective data collection process. A discussion of data related

problems experienced during this research and suggested enhancements

of the data collection process as well as suggestions for selecting

personnel for conversion projects are included in this section.

Data Collection Forms

Repeating the earlier discussion of the forms and the encoding

required for the data is not appropriate at this point. However,

some general comments are in order. Open-ended questions, such as

the Formal Training question of the programmer's form, should be

avoided since the variety of possible responses is enormous and an

adequate analysis of the question will be difficult. Questions with

complex conditionals, such as, "If the majority of programs you shall

132

be transitioning are not COBOL, then what type of system are they?",

may cause some confusion. Direct and simple questions should be the

rule and for the most part, this was true of Phase IV questions. The

program information form could have included more questions

requesting additional descriptions of the program, such as, input and

output data, detailing numbers, sizes, types, etc. At the far end of

the spectrum are the conversion data collection forms designed by the

Data & Analysis Center for Software(DACS)[1981]. Though these forms

have been available for about three years, they have not been used

extensively because of the extreme number of details requested. The

DACS should be commended, however, for its efforts to collect

conversion data to establish a data base for use by the community.

Data Submission Procedures

If the forms are well designed but they are improperly completed,

reliable analysis with adequate results will be impossible. A good

form -.- t be supported by better instructions and definitions for

completion. Management of all levels must insure that all forms are

well understood and properly completed. Some of the organizational

differences detected in this research may have been due to different

interpretations of the data collection forms and submission process.

Many forms for programs converted were submitted prior to their being

redocumented thus requiring a reporting of zero time for this

activity. This time or effort category was subsequently deleted from

the productivity analysis conducted.

133

Quality control of the program information forms is a must.

This is required, not at the AFASPO which is the collection

repository, but at all of the conversion centers responsible for

completing these forms. The lack of quality control is evidenced by

the forms of one center that typically volunteered an overall hour

total for the program which included the programmer's knowledge code

in the count of total hours.

Controlling the Process

There seemed to be an apparent lack of directive power in regards to

the data collection process. The AFASPO had to practice expert

appeasement skills as many organizations quibbled with the conversion

and data collection process. At least one organization was permitted

to forgo the completion of program information forms. Other

organizations showed their disagreement in the little attention

placed on correct completion of data forms. The advantages, to the

entire Air Force, of having sound productivity and effort data for

analysis are apparently not clearly seen by all. This is a

management problem which could be present within any large

corporation. Better marketing of ideas and processes, such as data

collection, is a must for software engineers involved in conversion,

as well as in any other area.

134

Personnel Selection Considerations

One of the significant management tasks required prior to a

conversion is the staffing of the project team. This thesis research

indicates some criteria that may used by a Phase IV manager to select

the best personnel for the conversion effort. Programmers with

little or no knowledge of the programs to be converted are preferred

since these individuals will be least prone to make modifications or

enhancements during the conversion process thus maintaining the

required level of reduced risk. Maintenance type programmers should

only be used if they are well experienced. Development type

programmers with a few years of experience are primary candidates for

selection. Programmers with a foundation in computer science, data

processing-MIS, or mathematics/engineering are preferred. Knowledge

of both the source and target languages is important; however,

experience with the source language is more significant than

experience with the target language. Since the organizational

element is a factor to be considered, an individual with previous

experience in a well managed organization with a good technical

reputation is a better candidate for selection.

Future Research Possibilities

The research conducted serves ideally as a springboard for many

additional investigations. Most related work in the new development

environment may be repeated within the conversion context. This

thesis research parallels studies in the development environment and

F
135

the same procedural steps should be repeated when additional data

becomes available. The Phase IV conversion is due for completion in

late 1985 at which time a complete analysis would be in order.

The impact of the organization on the conversion process and on

the programmers' productivity should be investigated further. A

definition of specific organizational traits should be developed to

assist in the identification of productivity or overall effort

differences. The list of traits should include management

techniques, development methodologies, programmer tools, military vs

civilian categorizations, etc.

The productivity of a group of programmers involved in the

conversion of one program should be studied. Methods for defining

group personnel characteristics, such as education and experience,

should be investigated. An examination of the personnel

characteristics in relation to the program details and overall

productivity is of interest.

The FCSC model formulation used in the effort estimation

analysis demonstrated low accuracy. An investigation of the model

details to determine reasons for this performance is definitely in

order. The compatible versus non-compatible(source and target)

environments require the employment of different FCSC model

formulations. These and other parameter choices should be

investigated.

This research involved only COBOL to COBOL program translations.

When the few FORTRAN and Assembler to COBOL program translations do

I

136

take place, a new analysis of the associated effort and productivity

is a must. Data from other Air Force or non-government projects can

be used to check the COBOL to COBOL translation results or to provide

a source of information for other types of language conversions.

The effort estimation work can be expanded to cover the entire

spectrum of the conversion project. However, data for this analysis

may be difficult to come by. It may still be possible to collect

historical conversion planning and preparation hours of all Phase IV

organizations and initiate procedures for the capture of all post-

conversion effort hours. This data would lead to an investigation of

the applicability of the time-based effort estimation Rayleigh model.

The software conversion realm of the computer field has not

received sufficient attention from researchers and it is becoming

increasingly important that this area not be overlooked. Computer

science researchers are primarily responsible to the computer

community for studying all aspects of the field to determine ways of

improving the availability and usability of the computer resource.

The millions of dollars being spent for conversions every year are an

indication of the significance of conversions in the industry. Much

work is necessary to insure that financial resources are being

effectively expended for conversions. The areas addressed by this

research, programmer productivity and effort estimation, and the

recommended research above are but a small part of the overall effort

required.

I m m ., , , • , ,

137

REFERENCES

AHTOLA, 0. AND WILDT, A.R. 1978. Analysis of Covariance. Sage
Publications, Inc., Beverly Hills, CA.

AIR FORCE AUTOMATED SYSTEMS PROJECT OFFICE. 1982a. "Phase IV
Development Center Software Transition Guidance Package." (Feb.).
AFASPO/PGYW, Gunter AFS, AL.

AIR FORCE AUTOMATED SYSTEMS PROJECT OFFICE. 198Lb. "Phase IV Data
Project Plan." (June). AFASPO/PGC, Gunter AFS, AL.

AIR FORCE AUTOMATED SYSTEMS PROJECT OFFICE. 1983. "Program
Information Form and Programmers' Resumes." (Letter, Apr.).
AFASPO/PGY, Gunter AFS, AL.

AIR FORCE AUTOMATED SYSTEMS PROJECT OFFICE. Undated. "Analyze
Contractor Conversion Techniques and Programming Methodology."
Report No. STC 404. AFASPO/PGY, Gunter AFS, AL.

AIR FORCE DATA SYSTEMS DESIGN CENTER. 1982. "AFDSDC In-House
Software Transition Plan." AFDSDC/DMBF, Genter AFS, AL.

AITKIN, M.A. 1974. "Simultaneous Inference and the Choice of Variable
Subsets in Multiple Regression." Technometrics 16, 2(May),
221-227.

ARON, J. D. 1969. "Estimating Resources for Large Programming
Systems." Report on a Conference Sponsored by NATO Science
Committee. (Oct.). Rome, Italy. Also in Tutorial: Software Cost
Estimation and Life Cycle Control, L.H. Putnam, Ed. IEEE Computer
Society Press, Los Alamitos, CA, 1980.

BAILEY, J.W. AND BASILI, V.R. 1981. "A Meta-Model for Software
Development Resource Expenditures." In Proc. 5th Int. Conf. on
Software Engineering (Mar.), IEEE Computer Society Press, Los
Alamitos, CA, pp. 107-116.

BASILI, V.R. AND FREBURGER, K. 1981. "Programming Measurement and
Estimation in the Software Engineering Laboratory." Journal of
Systems and Software 2, 2(June), 47-57.

BOEHM, B.W. 1981. Software Engineering Economics. Prentice-Hall,
Englewood Cliffs, NJ.

BOOCH, G. 1983. Software Engineering with Ada. Prentice-Hall,

Englewood Cliffs, NJ.

BROOKS, F. 1975. Mythical Man-Month. Addison-Wesly, Reading, Mass.

138

CHAPIN, N. 1981. "Productivity in Software Maintenance." In Proc.
AFIPS 1981 Nat. Computer Conf.. vol. 50., AFIPS Press, Arlington,
Va, pp. 349-352.

CHRYSLER, E. 1978. "Some Basic Determinants of Computer Programming
Productivity." Commun. ACM 21, 6(June), 472-483.

COLLICA, J., SKALL, M. AND BOLOTSKY, G. 1980. "Conversion of Federal
ADP systems: A Tutorial." (Aug.). National Bureau of Standards,
Publication No. 500-62.

COX, D.R. AND SNELL, E.J. 1974. "The Choice of Variables in
Observational Studies." Applied Statistics 23, 1, 51-59.

CROSSMAN, T.D. 1979. "Taking the Measure of Programmer
Productivity." Datamation 25, 5(May), 144-147.

DATA & ANALYSIS CENTER FOR SOFTWARE. 1981. "DACS Conversion Data
Collection Forms." (June). DACS, RADC/ISISI, Griffiss AFB, NY.

DATAPRO. 1983. oDATAPRO Directory of Software. Datapro Research
Corporation, Delran, NJ.

DeMARCO, T. 1982. Controlling Software Projects: Management,
Measurements & Estimation. Yourdon Press, New York, NY.

DEPARTMENT OF DEFENSE. 1983. Software Technology for Adaptable,
Reliable Systems(STARS) Program Strategy. (Mar. 15). DoD
Publications.

DRAPER, N.R. AND SMITH, H. 1966. Applied Regression Analysis. John
Wiley & Sons, Inc., New York, NY.

DUNHAM, J. AND KRUESI, E. 1983. "The Measurement Task Area."
Computer 16, ll(Nov.), 47-55.

FEDERAL CONVERSION SUPPORT CENTER. 1981a. "Review and Analysis of
Conversion Cost-Estimating Techniques." Report No.
GSA/FCSC-81/001. (Apr.). FCSC, Falls Church, VA.

FEDERAL CONVERSION SUPPORT CENTER. 1981b. "Conversion Contracting
Techniques Associated With Procurement of a Replacement ADP
Hardware System." Report No. GSA/FCSC-81/003. (Sep.). FCSC,
Falls Church, VA.

FEDERAL CONVERSION SUPPORT CENTER. 1982a. "Federal Conversion
Support Center Conversion Cost Model(Version 2)." Report No.
OSD/FCSC-82/001. (June). FCSC, Falls Church, VA.

FEDERAL CONVERSION SUPPORT CENTER. 1982b. "Conversion Work Package."
Report No. OSD/FCSC-82/002. (July). FCSC, Falls Church, VA.

139

FEDERAL CONVERSION SUPPORT CENTER. 1982c. "FCSC Conversion Tools
Survey." Report No. OSD/FCSC-83-O01. (Oct.). FCSC, Falls
Church, VA.

FEDERAL CONVERSION SUPPORT CENTER. 1983a. "Conversion Plan Outline."
Report No. OSD/FCSC-83-002. (Jan.). FCSC, Falls Church, VA.

FEDERAL CONVERSION SUPPORT CENTER. 1983b. "Software Conversion
Lessons Learned." Report No. OSD/FCSC-83/003. (Jan.). FCSC, Falls
Church, VA.

FERNANDEZ, J.D. 1982. "Software Engineering Economics." Technical
Report No. TAMUDCS-82-004-R, (May), Department of Computer
Science, Texas A&M University.

FERNANDEZ, J.D. AND SHEPPARD, S.V. 1984. "Software Conversions to
Ada Require Unique Planning." Submitted to Defense Management
Journal for publication in 1984.

FREUND, R.J. AND LITTELL, R.C. 1981. SAS For Linear Models: A Guide
to the ANOVA and GLM Procedures. SAS Inst-itute Inc., Cary, NC.

FRY, J.P., LOWENTHAL, E., SHOSHANI, A., BIRSS, E., LUM, V., SU, S.,
DRESSEN, P., MARION, R., SWARTWOUT, D., GOGUEN, N., NAVATHE, S.,
TAYLOR, R., KAPLAN, M., SCHINDLER, S., AND YORMACK, B. 1978. "An
Assessment of the Technology for Data- and Program-related
Conversion." In Proc. AFIPS 1978 Nat. Computer Conf., vol. 47.
AFIPS Press, Arlington, Va, pp. 887-907.

GENERAL ACCOUNTING OFFICE. 1977. "Millions in Savings Possible in
Converting Programs from One Computer to Another." GAO Report
FGMSD-77-34, (Sep. 15).

GRIM, G.D., EPLER, E.D., AND ANDRUS, W.L. 1978. "Estimating the Cost
of Conversion." In Proc. of Computer Related Information Systems
Symposium. Sponsored by the U.S. Air Force Academy, (Jan.
25-27), Colorado Springs, CO.

HAHN, W. AND STONE, J. 1970. "Software Transfer Cost Estimation
Technique." (July). MITRE Corporation, Bedford, Mass.

IBM. 1981. IBM PC Disk Operating System. IBM Corp., Boca Raton, FL.

ITT RESEARCH INSTITUTE. 1979. Quantitative Software Models. Report
for the Data and Analysis Center for Software of Rome Air
Development Center, Griffiss AFB, NY, (Mar.).

IVERSON, G.R. AND NORPOTH, H. 1976. Analysis of Variance. Sage
Publications, Inc., Beverly Hills, CA.

L _ __

140

JEFFERY, D.R. AND LAWRENCE, M.J. 1979. "An Inter-organizational
Comparison of Programming Productivity." In Proc. 4th Int. Conf.
on Software Engineering, (Sept.), IEEE Computer Society Press,
Los Alamitos, CA, pp. 369-377.

JEFFERY, D.R. AND LAWRENCE, M.J. 1981. "Some Issues in the
Measurement and Control of Programming Productivity."
Information & Management 4, 4(Sept.), 169-176.

JOHNSON, J.R. 1977. "A Working Measure of Productivity." Datamation
23, 2(Feb.), 106-110.

JONES, T.C. 1978. "Measuring Programmer Quality and Productivity."
IBM Sys !. 17, 1, 39-63.

LAWRENCE, M.J. 1981. "Programming Methodology, Organizational
Environment, and Programming Productivity." Journal of Systems
and Software 2, 3(Sept.), 257-269.

LYNN, C., RISLEY, J. AND WELLS, R. 1979. "Program Conversion--One
Successful Paradigm." In Proc. AFIPS 1979 Nat. Computer Conf.,
vol. 48. AFIPS Press, Arlington, Va, pp. 139-146.

MENDENHALL, W. 1968. Introduction to Linear Models and the Design
and Analysis of Experiments. Duxbury Press, A Division of
Wadsworth Publishing Co., Inc., Belmont, CA, p. 210.

MILLS, H.D. 1980. "The Management of Software Engineering Part 1:
Principles of Software Engineering." IBM System J. 19, 4,
415-420.

MONTGOMERY, D.C. AND PECK, E.A. 1982. Introduction to Linear
Regression Analysis. John Wiley & Sons, Inc., New York, NY.

NAJBERG, A. 1981. ESD Independent Sufficiency Review of Phase IV.
Air Force Electronics Division. Available from AFASPO/PGYW,
Gunter AFS, AL.

NAJBERG, A. 1983. Private Conversation. The Analytic Sciences Corp.,
Reading, Mass. (Oct. 12).

OLIVER, P. 1976. Letter(Nov., 18), subject: "System Conversion."
To: Deputy Chief, Program Management Office, Headquarters Air
For Data Automation Agency. From: Director, Software
Development Division, Automatic Data Processing Equipment
Selection Office, Department of the Navy.

OLIVER, P. 1978. "Guidelines to Software Conversion". In Proc. AFIPS
1978 Nat. Computer Conf., vol. 47. AFIPS Press, Arlington, Va,
pp. 877-886.

141

OLIVER, P. 1979a. "Handbook for Estimating Conversion Costs of Large
Business Programs." NTIS Report AD-A065-145. (Feb.)

OLIVER, P. 1979b. "Software Conversion and Benchmarking." Software
World 10, 3, 2-11.

PAULSEN, L. 1981. "The Implications of Program Composition and Size
On Development Productivity." In Proc. 1981 Fall COMPCON, IEEE
Computer Society Press, Los Alamitos, CA, pp. 149-155.

PERLIS, A., SAYWARD, F. AND SHAW, M. 1981. Software Metrics: An
Analysis and Evaluation. MIT Press, Cambridge, Mass.

PUTNAM, L.H. 1980. Tutorial: Software Cost Estimating and Life Cycle
Control. IEEE Computer Society Press, Los Alamitos, CA.

REUTTER, J. 1981. "Maintenance is a Management Problem and a
Programmer's Opportunity." In Proc. AFIPS 1981 Nat. Computer
Conf., vol. 50. AFIPS Press, Arlington, Va, pp. 343-347.

ROSCOE, J.T. 1975. Fundamental Research Statistics for the
Behavioral Sciences. Holt, Rinehart and Winston, Inc., New York,
NY.

RUSHINEK, A. AND RUSHINEK, S.F. 1983. "An Evaluation of Mini/Micro
Systems: An Empirical Multivariant Analysis." Data Base 14,
4(Summer), 37-47.

SAS INSTITUTE. 1982a. SAS User's Guide: Basics. SAS Institute Inc.,
Cary, NC.

SAS INSTITUTE. 1982b. SAS User's Guide: Statistics. SAS Institute
Inc., Cary, NC.

SCHNEIDER, D.B. 1978. Computer Systems Conversion - A Management
Perspective. U.S. Department of Justice Report, (Oct.). NTIS
No. PB-297-604.

SCHNEIDER, G.M., SEDLMEYER, R.L. AND KEARNEY, J. 1981. "On the
Complexity of Measuring Software Complexity." In Proc. AFIPS 1981
Nat. Computer Conf., vol. 50. AFIPS Press, Anlington, Va, pp.
317-322.

SCHNEIDER, V. 1978. "Prediction of Software Effort and Project
Duration - Four New Formulas." SIGPLAN NOTICES 13, 6(June),
49-59.

SCOTT, R.F. AND SIMMONS, D.B. 1974. "Programmer Productivity and the
Delphi Technique." Datamation 20, 5(May), 71-73.

I

142

SCOTT, R.F. AND SIMMONS, D.B. 1975. "Predicting Programming Group
Productivity: A Communications Model." IEEE Transactions on
Software Engineering SE-1, 4(July).

SHNEIDERMAN, B. AND THOMAS, G. 1982. "Automatic Database System
Conversion: Schema Revision, Data Translation and Source-to-
Source Program Transformation." In Proc. AFIPS 1982 Nat.
Computer Conf. vol. 51. AFIPS Press, Arlington, VA, (June
7-10), pp. 579-587.

SKALL, M.W. 1982. "Guide to Contracting for Software Conversion
Services." National Bureau of Standards Publication 500-90,
(May).

WALSTON, C.E. AND FELIX, C.P. 1977. "A Method of Programming
Measurement and Estimation." IBM Systems J. 16, 1, 54-73.

WIENER-EHRLICH, W.K., HAMRICK, J., AND RUPOLO, V. 1981.
"Applicability of the Rayleigh Model to Three Different Types of
Software Projects." In Proc. IEEE 1981 Fall COMPCON. IEEE
Computer Society Press, Los Alamitos, CA, (Fall), pp. 128-148.

WOLBERG, J.R. 1981. "Comparing the Cost of Software Conversion to
the Cost of Programming." SIGPLAN NOTICES 16, 4(Apr.), 104-110.

WOLBERG, J.R. 1982. "A Costing Model for Software Conversions."
Software Practice & Experience 12, ll(Nov.), 1043-1049.

WOLBERG, J. R. 1983. Conversion of Computer Software. Prentice-
Hall, Englewood Cliffs, NJ.

WOLVERTON, R.W. 1974. "The Cost of Developing Large-Scale Software."
IEEE Trans. on Computers C-23, 6(June), 615-636.

WOODFIELD, S.N. SHEN, V.V. AND DUNSMORE, H.E. 1981. "A Study of
Several Metrics For Programming Effort." Journal of Systems and
Software 2, 2(June), 97-103.

143

GLOSSARY

ANALYSIS OF VARIANCE(ANOVA): The analysis of variance is a
special case of general linear regression analysis. There are
two primary uses of ANOVA: development of a regression(ANOVA)
model where all the variables are of the categorical(qualitative)
type and hypothesis testing during normal regression analysis.
The ANOVA model typically determines the affects of the the
various levels of the categorical variables and their
interactions on the overall average of the dependent variable.
The results of the ANOVA include the estimated
coefficients(parameters or effects) of each categorical variable
with associated measures of significance. The hypothesis tested
by the ANOVA is that all the coefficients or parameters are 0.
The F statistic is used for this test and if the probability of
making a Type I error is less than the selected level of
significance then the null hypothesis is rejected and significant
coefficients are assumed to exist.

AVERAGE PREDICTION ERROR: The average prediction error is used
when validating the predictive power of a regression model with
new data. The sum of the deviations(differences between the
predicted and observed values of the dependent variable) is
calculated and then divided by the number of data points in the
sample. It is not expected that the average prediction error be
equal to zero but that it be relatively close to zero indicating
approximately unbiased predictions.

AVERAGE SQUARED PREDICTION ERROR: The average squared prediction
error is used when validating the predictive power of a
regression model with new data. It is calculated by first
determining the sum of the squared deviations(differences between
predicted and observed values) and then dividing by the number of
points in the sample. The result may be compared to the mean
square error which can be thought of as the average variance of
the residuals(deviations or errors) from the model's fit. The
difference between the average squired prediction error and the
mean square error should not be excessive for one to conclude
that the regression model is likely to be successful as a
predictor.

CATEGORICAL VARIABLE: Categorical variables are qualitative
variables which fit research subjects into categories in which
the notion that one category is higher than or lower than another
category can not be substantiated. A typical categorical
variable ;.s that of sex--male or female.

CHI-SQUARE TEST: Chi-square tests are typically called goodness
of fit tests since they are used to determine whether an observed

144

frequency distribution departs significantly from a hypothesized
frequency distribution. Chi-square tests are also used with
contingency(2 by 2) tables to determine whether two
qualitative(categorical) variables are related. A measure of
association(correlation) between the variables is normally
computed with the Chi-square test for a contingency table. Also,
a probability of a Type I error is provided to test the null
hypothesis that the variables are independent or unrelated. A
probability higher than one's selected level of significance
indicates that the null hypothesis of independence can not be
rejected.

CORRELATION: The term correlation refers to the degree of
relationship or correspondence between two variables. Correlated
variables are those which tend to vary together. A correlation
coefficient is a measure between -1 and 1 which indicates the
strength and direction of the relationship existing between the
two variables. There are several different kinds of correlation
coefficients but they have a common meaning. The closer to
one(+l or -1) the coefficient is, the greater the degree of the
relationship or correlation. A correlation matrix provides a
method for describing the correlation between pairs of several
variables where the diagonal is always one.

F STATISTIC: In regression analysis, the model F statistic is
determined by computing the quotient of the mean squares of
regression(model) divided by the mean squares of the
error(residuals). If the model prov.ded a good fit then one
would expect the F statistic to be a few times larger than the
critical F value. The critical F value may be calculated by
using the degrees of freedom of the mean squares, a selected
level of significance, and the F distribution or table of F
values. This higher F statistic allows one to reject the
associated null hypothesis that all of the coefficients or
parameters of the model are 0. With SAS, the F distribution
probability associated with the F statistic is provided for
comparison with one's level of significance such that if the
probability is greater than the selected level of significance
one can not reject the null hypothesis that all of the
coefficients are 0. A partial F statistic is also used to test
the null hypothesis that one specific coefficient or parameter is
0. The partial F statistic is provided by SAS for each of the
variables in the model. If the variable being tested is x then
the partial F statistic is computed by first determining the
measure of the sum of squares of the model(regression) given that
all the other variables(except x) are in the model; that is, the
"extra sum of squares" due to x. This "partial" sum of squares
is then divided by the mean squares of the error(residuals) in
the model to calculate the partial F statistic.

145

FACTOR ANALYSIS: Factor analysis is a method used to study the
interrelationship between quantitative(continuous) variables with
the objective of reducing the number of variables to a smaller
set that retains the original information as much as possible.
The new variables(factors) are exact mathematical transformations
of the original data and are constructed on the basis of the
interrelations exhibited in the data. The factors are usually
extracted in such a way that one factor is independent from the
other.

GLM SAS OUTPUT INTERPRETATION: There are basically four parts to
the GLM procedure output provided in this thesis research.

1. Regression model ANOVA results. There are three types of
sum of squares provided by the basic ANOVA table:
model(regression), error(residual) and corrected total(total).
Each sum of squares has an associated degrees of freedom(DF).
The DF for the model sum of squares are equal to the sum of the
number of quantitative variables in the model plus the number of
levels(categories) minus one for each qualitative variable
present in the model. The DF for the total sum of squares are
equal to the size of the sample(n) of data points minus one. The
DF for the error sum of squares are equal to n(sample size) minus
the DF for the model sum of squares minus one. The model or
regression mean square is computed by dividing the model sum of
squares by the associated DF. The error or residual mean square
is computed by dividing the error sum of squares by the
associated DF.

2. Basic model statistics. The model F statistic is calculated
by determining the ratio of the model mean square and the error
mean square. The probability(PR) or p value associated with the
F statistic indicates the probability of obtaining this value of
F or one larger by chance alone or this probability can be
interpreted in relation to one's chosen level of significance,
such that it indicates the probability of committing a Type I
error. If the probability is higher than one's level of
significance, one can not reject the null hypothesis that all the
model parameters(contributions) are 0. The R-SQUARE is the
coefficient of determination. C.V. is the coefficient of
variation computed by dividing the square root of the error mean
square(considered the average model variance of the residuals) by
the mean of the dependent variable and expressing it as a
percentage. This measure indicates that the residual variation
is x% of the mean of the dependent variable. Finally, the
overall mean of the dependent variable is provided.

3. Partial sums of squares. The TYPE III SS represent the
partial sums of squares for each of the variables. They are
specifically defined as the "extra sums of squares" due to the
addition of the variable to the model given that all the other

I

146

variables are already in the model. The DF associated with each
variable are equal to 1 for quantitative variables and the number
of categories minus one for each of the qualitative variables.
The F VALUE represents the partial F statistic for testing the
null hypothesis that the coefficient(contribution) of the
variable is 0. The probability associated with the partial F
statistic has the same meaning as that of the model F statistic
except the test is for a single coefficient.

4. Estimates of coefficients. The last section of the GLM
output presents the model parameters. The intercept is listed
first followed by the coefficients of all the variables in the
model. Categorical variables are depicted with one coefficient
for each level of the categories minus one. The affect of the
last category of each of these variables is included in the
intercept term. It should be noted that each category's
coefficient is associated with a binary value, such that only the
category represented by a particular subject provides an impact,
that is, a value of 1 is multiplied by the coefficient.

MULTICOLLINEARITY: Multicollinearity defines the problem of
linear dependencies or correlations between the independent
variables in regression analysis. Since the variables are not
trully independent, the method of least squares will produce poor
estimates of the individual model parameters. When the variance
inflation factors(see definition) exceed 5 or 10, the associated
regression coefficients are poorly estimated because of
multicollinearity. The simplest method for dealing with this
problem is to remove one or more of the correlated independent
variables and re-start the analysis.

MULTIPLE CORRELATION COEFFICIENT* The multiple correlation
coefficient is the square root of R (see definition).

PREDICTION ERROR SUM OF SQUARES(PRESS): The PRESS statistic is
used as a form of data splitting, when other forms are not
feasible, in model validation. To calculate PRESS, an
observation i is selected and removed and the regression model is
fitted to the remaining n-1 observations. This new model is used
to predict the withheld observation yi and the prediction
error(e.) is determined to be the difference between the actual
observation and the predicted value. The same procedure is
followed for each observation. Finally, the value of PRESS is
calculated as the sum of all the prediction errors squared. The
PRESS is then used to calculate R**2 for prediction which
measures the model's ability to predict new observations.

R2: The coefficient of determination(R 2) is typically used to
give the value of the model's predictive or explanatory power.
Its value has a range between 0 and 1 with a value closer to 1
indicating a better model. The coefficient of determination is

147

calculated as the ratio of the sum of squares due to the model to
the total sum of squares. Its square root is generally called
the multiple correlation coefficient in multiple regression
analysis.

R2 PREDICTION: The R2 for prediction is defined as the percent
variability in the new data explained by an existing model. It
is calculated as 1 minus the ratio of the error sum of squares to
the total sum of squares. It is typically used to assist tith
the validation of an existing model with new data. This measures
how well the model predicts new observations as compared to how
it fits the original data.

REGRESSION ANALYSIS: Regression analysis is a statistical
technique to determine the equation of the line or curve which
minimizes the deviations between the observed data and the
regression equation values. Regression is based on the least
squares principle of minimizing the error sum of squares. The
regression model that results has predictive or explanatory power
which is typically measured by R**2, the F statistic and the
reasonableness of the parameters estimated. Given a set of
variables, there is probably more than one model that fits the
data well with a different group of variables in the model. If
several variables are involved, the term multiple regression
analysis is used.

SIGNIFICANCE LEVEL: The significance level is the degree of
uncertainty about a particular statistical statement under
specified conditions. Significance levels are typically
signified by alpha and common values are 0.10, 0.05 and 0.01.
The significance level is normally associated with the Type I
error probability, such that, if the calculated probability is
higher than the level of significance one can not reject the null
hypothesis since it may be true.

SUMS OF SQUARES: The total sum of squares for any data may be
computed as the sum of squares of the differences between each
dependent variable value and the mean associated with the
dependent variable. The total sum of squares has two components:
the sum of squares explained by regression and the sum of squares
unexplained by regression. The sum of squares explained by
regression is typically called the model or regression sum of
squares and is calculated as the sum of squares of the
differences between the predicted yi and the mean of y(actual).
The sum of squares unexplained by regression is typically called
the error or residual sum of squares and is calculated as the sum
of squares of the differences between the predicted y, and the
actual y . The mean square value of each component of 'the total
sum of iquares is usually calculated by dividing each sum of
square by the associated degrees of freedom. The ratio of the
model or regression mean square to the error or residual mean
square determines the F statistic for model hypothesis testing.

148

VARIANCE INFLATION FACTOR(VIF): The variance inflation
factor(VIF) is typically used to detect multicollinearity. It
can be shown that the variance of each estimated partial
regression coefficient is "inflated" by the factor 1/(1-RI),
where RI is the coefficient of determination of each of the
independent variables as related to all other independent
variables. The variance is larger by that factor than it would
be if all independent variables were uncorrelated(RI=O). The SAS
GLM procedure prints the reciprocal(tolerance value) of the VIF.
A VIF that exceeds 5 or 10 implies multicollinearity and requires
investigation.

149

APPENDIX A

DETAILS OF CONVERSION EFFORT/COST ESTIMATION MODELS

Federal Conversion Support Center Hybrid Model

The FCSC model was originally and formally called FCSC Hybrid

Conversion Cost Model since it is a combination of several models and

ideas[Federal Conversion Support Center, 1981a; 1982a]. The model

was designed to cover a wide spectrum of conversion costs, from

planning to system testing and documentation. The FCSC model is

concerned not only with costs for staff resources but also with

machine and miscellaneous resources. For those tasks that are very

site dependent or unique for each conversion effort, only guidelines

for costing are provided.

The FCSC model's estimate for conversion planning and analysis

is a function of the size of the project and the detail of the

analysis and planning required. Assuming conversion to a

noncompatible target environment, the staff-days required are

calculated as follows:

SD = 5S + P + J

where,

SD = number of staff-days

S = number of systems

P = number of programs(l SD per program)

J = number of job streams(l SD per job stream).

150

For conversions to a highly compatible target environment, the staff

days are reduced for each ingredient of the equation, such that

SD = S + P/2 + J/2.

For conversions to environments that have other degrees of

compatibility, the number of staff-days per system may be varied

between 1 and 5, and the number of staff-days per program and per job

stream between 1/2 and 1.

The FCSC model presents an equation for estimating the effort

involved in work package identification and preparation. The

resources required, whether or not the target environment is

compatible, are calculated as follows:

SD = 3*S + (P + F + J)/10

where S, P, J, and SD are defined as above and

F = number of files.

Depending on the degree of compatibility and work already

accomplished the constants 3 and 10 may be changed. Note also that

the estimate includes 3 staff-days for every system and 1 staff-day

for every 10 system components.

The test data generation estimates, including the transfer of

test files to the target machine, take into consideration the status

of the documentation and the amount of code exercised by the test

data. The formula is illustrated as:

SD = [(5*P)+(2*F)]*(TDR-TDE)*[1.0-(DOC/3)]

where the model estimates 5 staff-days per program(P) and 2 staff-

days per file(F) and

151

TDR = percentage of code the test data is required to

exercise

TDE = percentage of code the test data currently exercises

DOC = percentage of adequate and up-to-date documentation.

When TDR = TDE or TDE > TDR, it is estimated that about 1 staff-day

per program will be necessary to validate the existing data and its

percentage of execution(SD = 1 * P).

The FCSC model equation for application program and system

software conversion, is based on several factors. One such basis is

complexity. The model documentation provides a guideline matrix for

assessing the intrinsic complexity of the software inventoried. The

complexity is basically divided into 5 classes identifying programs

and system software eligible for(in FCSC's terminology):

1) reprogramming

2) major program logic modification

3) minor program logic modification

4) simple syntax translation

5) software transference

Another basis for the equation is programmer productivity which

must be quantified. In order to do this, the FCSC model uses the

three development tasks of design analysis, programming and esting.

A new development effort has typically been found to require 40% for

design analysis, 20% for programming and 40% for testing.

From its study, the FCSC has developed assumptions as to the

percentage of effort of each of these three tasks for each of the 5

152

complexity classes listed above. For a class 1 conversion, the total

effort relative to new development is reduced to 80% and is divided

as follows: 30% for design analysis, 15% for programming and 35% for

testing.

To summarize all five complexity classes as listed by the FCSC

one can provide a matrix of percentages such as those in Table 13

Table 13. Task Percentages for FCSC Complexity Classes

Effort Relative To Design
Class New Development Analysis Programming Testing

1 0.800 0.30 0.150 0.350
2 0.500 0.20 0.100 0w200
3 0.160 0.04 0.020 0.100
4 0.035 0.01 0.005 0.020
5 0.001 0.00 0.000 0.001

Another basis for program and system software effort estimation

is the documentation status. In order to avoid excessive

subjectivity in estimating the percentage of adequate, up-to-date

documentation that exists, it is preferable to estimate the

documentation status at as detailed a level as possible. However,

summarizing the status of documentation on an overall system level

may suffice. The FCSC model guidelines present a total of 10

documents which must be rated between O(no documentation exists) and

l0(complete set exists and is up-to-date). The maximum possible

total of all would be 100%; however, the typical overall total status

is well below 100%.

153

The last basis is the productivity rate which is highly

subjective since it is usually difficult to determine what is

included in the measurement; i.e., the entire project or only the

conversion of the software, or manual, automatic or mixed software

translation. The FCSC model uses the RADC calculated median manual

productivity rate of 12.6 debugged lines of new development code per

day for a development programmer.

Each FCSC complexity class may then have an average manual

conversion productivity rate calculated as follows:

BR * NDE
MCPR =--------------------

s [(1.0 - (DOC/2)) * DE] + PEs + TEs

where,

MCPR = average manual conversion productivity rate in number of
5

debugged LOC manually converted per day for each

complexity class

DOC = documentation status percentage(as a fraction)

BR = baseline productivity rate for new development in debugged

LOC developed per day = 12.6

NDE = total effort required for new development = 100

s = complexity class: 1, 2, 3, 4, or 5

DES = design effort required for each class:

1 => 30; 2 => 20; 3 => 04; 4 => 01; 5 => 0

PEs = programming effort required for each class:

1 => 15; 2 => 10; 3 => 02; 4 => .5; 5 => 0

TEs = testing effort required for each class:

1 => 35; 2 => 20; 3 => 10; 4 => 2; 5 => .1

. , , , , ,.

154

The FCSC model presents a table with MCPR calculated for each

complexity class for various levels of documentation status.

The FCSC 1982 report also indicates that while no empirical data

exists on the actual productivity rate of an automatic translator,

for estimating purposes it can be assumed to be between the manual

productivity of class 4 and class 5 type conversions. Therefore the

FCSC uses 630 debugged LOC per day as the productivity of an

automatic translator. The FCSC also assumes the following typical

ranges for correct automatic translation percentages for each of the

5 classes:

1-- 0 - 25% 2 -- 20 - 75%

3 -- 65 - 90% 4 -- 80 - 100%

5 -- no automatic translation

The FCSC model's equation for calculating the staff-day resource

requirements can now be defined. The resources required are

calculated for each complexity class as follows:

SSD s = LOC s * (1 - T s) + LOCs * s

MCPR ACPR
where s

SSD s = staff-day resources required for each complexity class(for

each system, or whatever breakdown used by the estimator)

LOC s = LOC for each conversion complexity class including comment

lines for all application programs and system software

s = conversion complexity class: 1, 2, 3, 4, or 5

T = percentage(expressed as a fraction) of LOC capable of being
c
correctly translated by an average automatic translator.

155

Typical ranges are shown above. T = 0 if no automatic

translation is used.

MCPR = as defined earlier

ACPR = averaqe automatic conversion productivity rate for an

automatic translator = 630 LOC per day.

Finally, the total staff-day resource requirements for

application program and system software conversion can be determined

by summing the results of all classes as follows:

SD = Z SSD s
s=l,5

The next task for which the FCSC model provides estimates is

that of data file and data base conversion. The complexity of this

conversion directly impacts the total effort. Therefore, the FCSC

chose to define complexity classes in this area also. Some

guidelines for determining the appropriate class are provided in

table form by the FCSC. The following definitions of classes apply:

E -- A file is considered to be in class E if the source and

target environments are fully compatible and conversion is

not really required. In this case, a before and after file

compare should be performed.

D -- A file is considered to be of simple complexity(Class D) if

the conversion is character-to-character, from source to

target character set, on a one-to-one basis. Flat

physically sequential files fall in this category.

C -- Class C files are of average complexity and are involved in

character-to-character, character-to-word, or word-to-word

hA

156

conversions with the conversion parameters embedded in the

files. Examples are compressed or variable length record

files.

B -- A file is of class B(complex complexity) if the conversion

required is character-to-word, word-to-word, or word-to-

character with the conversion parameters external to the

file. Examples are binary and floating point files.

A -- Class A(very complex conversion) files are DBMS files or

data bases or can be combinations of any of the above

mentioned file features.

The first step in calculating the data file and data base

conversion staff-day resources required is to calculate the overall

percentage of documentation(DOC). Secondly, calculate the average

manual productivity rate(MCPR) for the data description or data

dictionary language if they exist, for each class of 1 through 5.

This is identical to the MCPR calculation given earlier for

application program and system software. Thirdly, using this MCPR

and the ACPR of 630 given above, calculate the staff-day resource

requirements(SSD) for each software complexity class 1 through 5

using the SSD formula given earlier and let SSD equal to staff day

resources for these calculations(DSD). Fourthly, classify the file

and data bases by conversion complexity class of A through E as

defined above and calculate the staff-day resources for each file

complexity class as follows:

FSDf = (Ff * FCFf) * (1.0 - (DOC/2))

where,

157

Ff = number of files to be converted for class f

f = file complexity class: A, B, C, D, or E

FCFf = file conversion complexity factor for each f

class(class A=5, B=3, C=2, D=l, and E=.25)

DOC = documentation status

FSDf = staff-day resources required for file conversion for

each file complexity class

Finally, one must sum the FSDf for all filF complexity classes and

the DSD s for conversion of any data description or dictionary

languages for the five software complexity classes as follows:

SD = Z FSDf + Z DSD
f=A,E s=l,5

where:

FSDf = staff-day resources for file conversions of f classes

as defined above

DSD s= taff-day resources for conversion of data languagess

for each class 1 through 5 as defined for SSD above5

SD = total effort for file and data base conversion

The next task receiving attention by the FCSC model is that of

operation control language(OCL) conversion. The methodology used for

estimating OCL conversion is identical to that used for application

program and system software conversion. The lines of OCL code are

used as input for estimation. Based on the assumption that each job

stream consists of lines of OCL, the OCL can be estimated by assuming

an average number of lines of OCL for each job stream. After the

lines of OCL are calculated, one calculates the overall percentage of

158

documentation(DOC) and the MCPR for each class. The staff-day

resources(SSD) for each class are calculated and then summed as

before to calculate the staff-day resources(SD) for the OCL

conversion for all classes. The formulas are the same as those for

application program and system software conversion.

The next task estimated is that of system testing which is

defined as the full application system testing using test data. The

duration of the system testing is compounded by a rerun factor due to

the fact that the testing may have to be restarted many times. The

staff-days(SD) required, assuming a non-compatible target

environment, are estimated to average about 1 SD per 4 job

streams(J), 1 SD per 2 programs(P), 1 SD per 2 systems(S) and 1 SD

per 80 system components(P+F+J, where F=files). This is multiplied

by a rerun factor(RE) which indicates the number of probable reruns

necessary to achieve a successful test. Typically, conversions

require 5 to 10 reruns. The staff-days(SD) are thus calculated as

follows:

SD = [J/4+P/2+S/2+((P+F+J)/80)]*[I+(RE/10)].

In the case of a more compatible target environment less testing is

anticipated before reaching acceptable output. In this case, testing

is to average 1 SD for every 10 systems(S) and files(F) and 1 SD for

every 80 system components. This is multiplied by a rerun factor(RE)

that is lower than for a non-compatible case. Thus for a more

compatible environment one uses:

SD - [((S+F)/10)+((P+F+J)/80)]*[l+(RE/10)].

159

The next task detailed by the FCSC model is that of

redocumentation. This redocumentation refers not to specific unit

tasks but rather to overall system and project level redocumentation

effort required. It is assumed that both technical and clerical

staff are required here. Assuming conversion to a non-compatible

target environment, the technical staff-day (TSD) resource required

for the technical portion of the redocumentation requires

approximately 1 staff-day for every 4 programs(P) and 1 staff-day for

every system(S). A percentage factor(RCOR), typically 10%(expressed

as a fraction), is added to the formula. RCOR represents the

coc.dination effort among the technical, clerical and the entire

project staff. Documentation percentage status(expressed as a

fraction) is also included. Thus,

TSD = (P/4+S)*RCOR*DOC.

The clerical staff resource requirements(CSD) require approximately

twice as long as those for the technical staff as follows:

CSD = (P/2+2*S)*RCOR*DOC.

Thus the total staff days(SD) for redocumentation are calculated as

follows:

SD = TSD + CSD.

This total could be adjusted if a high degree of compatibility were

present.

The next FCSC model task is acceptance testing which involves

the converted programs, revised documentation and procedures and

converted live data. The objective of this test is to achieve an

acceptable comparison of outputs against the source system results.

160

Typically, acceptance testing requires a basic level of staffing for

the entire duration of the test and a high level during the beginning

of the test cycle. Therefore, an exponential function is required to

express this pattern.

Assuming conversion to a noncompatible target environment, the

staff-days(SD) resources required for the basic or constant level of

staffing is usually about 1 staff-day for every 20 systems(S) for the

duration(DUR) of the test. In acceptance testing, only the

programs(P) and files(F) grouped together need to be tested. The

resources required are about 1 SD for every 5 programs and files.

This is multiplied by a negative exponential function to temper the

effect of a long duration. Thus,

SD = tDUR*(S/20)]+[(P+F)/5)*(l-e-(DUR/ 2 0))].

The next three tasks of the FCSC model are site preparation,

system transition(comDlete parallel, immediate cutover, or phased

parallel) and training. No estimating equations are provided since

there is a great deal of variability in these three tasks for

different organizations, environments and conversion efforts.

The next task addressed by the FCSC model is that of conversion

management and administrative overhead and/or contract administration

and support. The management to technician ratio(typically 1:10) must

be determined by the organization to perform the conversion. This

ratio is only concerned with the organization's own labor force. The

contractor's management is absorbed in contractor rates, if any

activity is contracted out.

161

The management to technician ratio(MTR), expressed as a

fraction, is applied to the total in-house staff resources(TINSD) for

the following tasks only:

* conversion planning and analysis

* conversion work package identification and preparation

* test data generation and validation

* application program and system software conversion

* data file and data base conversion

* operation control language conversion

* redocumentation

* system testing

* acceptance testing.

For those tasks that are contracted, an additional 10% is added

for contract administration and support. This 10% is applied to the

total contractor staff-day resources(TCONSD) estimated. Therefore,

the total resources for conversion management and administrative

overhead are computed as follows:

SD = (TINSD*MTR)+(TCONSD*.10).

The FCSC model briefly discusses conversion aids since they can

significantly reduce the time and cost of a conversion project.

There are no typical costs for conversion tools. Each case must be

separately addressed so no formulas can be derived for this task.

Once the staff-day resource requirements for the baseline

conversion tasks are completed, their costing may commence. The FCSC

1982 report contains salary figures for various grades of federal

162

civilian employees. These could be used to calculate the average in-

house personnel rate(IN$). An average contractor rate(CON$) for a

typical conversion effort in 1982 is about $60,000 per staff year or

$280 per staff-day. The FCSC uses 213.2 staff-days per year and

17.77 staff-days per month. The staff resources costing($COST) is

then based on the total staff-days(SD) and the percentage of work to

be done by in-house resources(IN%):

SCOST = (SD*IH%*IH$)+(SD*(l-IH%)*CON$).

For machine resource estimating and costing, the FCSC provides a

table which illustrates the baseline conversion tasks and the

expected number of machine hours a conversion programmer is assumed

to use per staff-month of effort. The machine resources in machine-

hours(MH) are calculated by dividing the total SD for each task by

17.77 and multiplying the result by the number of machine-hours

assumed to be used per staff-month(MHR). This is illustrated as

MH = (SD/17.77)*MHR.

The machine resources in machine cost(MCOST) are calculated by

multiplying MH by the percentage of use for the source machine(SM%)

and the target machine(TM%) and multiplying the results by the

average hour rate for each machine(SM$ and TM$). Thus,

MCOST = (MH*SM%*SM$)+(MH*TM%*TM$).

The last item included in the FCSC model is miscellaneous

resource estimating and costing. No estimating equations can be

given for this area for obvious reasons. Some items to be considered

under this task are suggested in the FCSC document.

163

Hahn and Stone Model

The earliest attempt to define a parametric conversion cost

estimation technique appears to be that Hahn and Stone of MITRE

Corporation[Hahn and Stone, 1970]. The cost estimation model

includes three cost categories: cost of transferring programs(Cp),

cost of transferring data(C D) and other costs(C0) such as documenting

the programs. The model is represented by an equation for total

cost(CT):

CT = Cp + CD + CO

The cost of transferring programs is made up of two major

components: the cost of manually transferring(C M) and the cost of

automatically transferring(CA) all or part of a program. This cost

is expressed as :

CP = CA + CM

The cost of automatic transfer(CA) can not be further defined since

it will vary with the type of transfer technique(redesign,

reprogramming, or recoding) and the differences between the source

and target environments.

The MITRE report defines the cost of manually transferring

programs as the largest single cost of the transfer process. This

cost(C M) uses three items in its calculation: (1) number of

instructions(lines) which must be manually transferred(I); (2)the

rate at which this can be done(lines/man-day)(R); and (3)cost of

manpower per man-day(CMD):

CM = (I/RT) * CMD

I .

164

In order to determine an equation for calculating the rate of

transfer(RT), Hahn and Stone of MITRE performed an extensive review

of the literature on estimation related to new developments, analyzed

program development data from several sources including the federal

government and MITRE. It was found that the number of statements

which can be manually transferred from one computer to another in one

man-day is a function of several variables as described below.

The basis for analysis was determined to be the new development

production rates. Some "rules of thumb" from the literature

indicated rates of one instruction/hour(8 instructions per man-day)

and 200 instructions/man-month(10 instructions per man-day). The

development data analyzed resulted in estimates of production

rates(instructions/man-day) for FORTRAN, COBOL and JOVIAL, whose

respective mean rates were 4.5, 5.8 and 5.7. Since conversion of an

existing program does not include all the functions normally

associated with development projects, the above production rates had

to be modified to establish a baseline conversion production

rate(R) and a program testing production rate(RT).
BC BT

By studying the division of effort for the tasks required for

new developments and the data of some conversion projects, a division

of effort was calculated for redesign, reprogramming, recoding and

conversion program testing. The conversion production mean rates

were then calculated and are shown in Table 14.

To compensate for critical aspects of the conversion effort, a

number of degradation factors were developed which add to the total

165

Table 14. Hahn and Stone Conversion Production Mean Rates

R R R RRede~ign RB-Rc Tt
Reprogram Recode Test

FORTRAN 8.2 11.3 22.5 14.1
COBOL 10.5 14.5 29.0 18.3
JOVIAL 12.5 17.3 34.5 21.7

ef fort required to transfer programs. Complete, accurate and up-to-

date documentation is necessary for efficient transfer of programs.

A suggested list of documentation that should be available is

provided in the report. The documentation factor(DFl) requires an

increase in manpower for various documentation status categories.

These are shown in Table 15 below.

Table 15. Hahn and Stone Documentation Status Categories

Category % Increase in Effort(D Fl)

Excellent 0%
Good 25%
Average 50%
Poor 75%

A program instability factor(D F2) is used to account for the

increase in effort necessary if modifications of the program will

take place during the transfer. The extent of past modifications of

the program is used as a guide to determine a modification level for

a D rating. The levels suggested are shown in Table 16
F2

166

Table 16. Hahn and Stone Modification Level Ratings

Modifications % Increase in Effort(DF2)

Nil 0%
Trivial 5%
Some 10%
Extensive 15%

A third degradation factor used in the MITRE model is that of

system integration(D F3). Program complexity has some impact on the

amount of resources required to transfer programs from one

environment to another. Based on some data analysis, Hahn and Stone

propose a degradation factor of .016*N where N is the number of

subprograms in the programs being converted. This factor becomes a

percentage that is used to increase the amount of testing required.

Now the total rate of transfer may be defined as

RT = I/MDT where MDT is the total number of man-days

required. With the factors given above then:
MD = I/R BC+(D F*I/R B C)+(DF2*I/RBC)+I/RBT +(DF3* I/RBT) where,

I/R = man-days for baseline conversion
BC

D Fl*I/R = mandays for documentation degradation factor

D F2*I/RBC = mandays for program instability factor

I/RBT = mandays for baseline test

DF3*I/RBT = mandays for system integration factor

Substituting MDT into the RT equation results in:

RBC R BT

RBC (+DF3)+RBT (+D F+DF2)

167

The data transfer costs are typically small in comparison to

program transfer costs. No specific method of computation is

provided by Hahn and Stone. The other costs involved in a transfer

are quite numerous and varied so the model only mentions some

functions that must be considered for a total costing calculation.

Some of these are training, facilities, planning and management.

The Hahn and Stone or MITRE model can then be summarized as

follows:

CRBC(l+DF3)+RBT (1+DFl +DF2)CT = Z I * R CMD +CD +C0RBC*BT

The summation symbol indicates the sum over all the programs in the

inventory and all the symbols retain their meaning as defined above.

It should be reemphasized that I represents only the LOC to be

manually converted.

Grim, Epler and Andrus Estimation Method

Grim, Epler and Andrus reviewed the Air Force procedures for

conversion cost estimation and found that there was no comprehensive

method for estimating such costs. The results of their review and

study was a document suggesting guidelines for the costing of

conversion efforts[Grim, Epler and Andrus, 1978].

The first element examined was the cost of converting

applications programs which can be divided into analysis,

programming, manpower and machine costs. To calculate analysis

168

costs, one must first determine if there are patches. If so, one

must allow one man-day per 10 patch lines of code. Another analysis

cost element is that of sorts. If the target environment does not

produce sorted output identical to that of the source then allov a

maximum of two man-days of analysis per sort per program.

Site unique utilities must be converted if not replaced by

vendor software and if to be converted allow analysis time of between

two to five man-days for each utility. If the target computer does

not have equal or greater precision than the source, two man-days are

allowed for each program that performs arithmetic calculations.

After the analysis cost is determined, the programming cost in

man-days(M) must be calculated using the equation:

2*N *(l-%T)
M-

Rs*(l+D)
where,

N = number of source lines to be converted
s

%T= percentage(expressed as a fraction) of LOC translated by a

automatic translator

R = number of LOC converted per day by the average programmer.5

This factor may be locally derived or one of the factors

provided in the study may be used. Examples of factors

provided are : COBOL to COBOL translations approximate 30

lines of old system per day while COBOL to FORTRAN

approximates 10.5 lines per day.

D = percentage that the old system is documented expressed as a

decimal. A value of 1.00 represents complete and up-to-date

169

documentation. No documentation or comments in a program

means a value of 0.0 is appropriate.

After M above is computed, it may be increased up to 20% if the

programs in question are thought to be more complex than the average.

To determine the dollar programming manpower cost(Cp), the

organization's dollar cost for one programmer man-day(PM) is

multiplied by M:

Cp = M * PM

To determine machine costs(CM), several programs of average size

are compiled and test run and an average cost per run(R) is

calculated. In a batch environment the average programmer makes two

runs per day so

CM= 2 * M * R.

In an online programming system, 3.5 runs per day is appropriate

so:

CM = 3.5 * M * R.

After examining application program conversion costs, data

conversion is analyzed. The basic cost factor in data conversion is

the cost of reading or writing a single average size physical record

of data which is the cost of a single computer input/output unit.

This cost may be determined from the old system. This old system I/O

unit cost(I) should be multiplied by the average number of physical
0

records per file(F r) and then multiplied by the number of files(Nf).

To this amount one must add a similar computation for loading the

file to the new system using the new system I/O unit cost(In). Add

170

to this new amount the cost of two programmer man-days(2*P M) per

file.

The resulting data conversion cost(Cd) is then:

Cd = (Io*Fr*Nf)+(In*Fr*Nf)+(2*PM*Nf).

This is appropriate for sequential files. If the current files have

a more complex structure than strictly sequential, the In and I

costs should be multiplied by some complexity factor. This factor

may be determined by comparing the cost of a sequential file dump and

a complex file dump of similarly sized files.

If the target environment is an upgrade in the same product line

and if a direct conversion utility is available, a new T/O unit

cost(I) should be calculated and then:

Cd n (In*Fr*Nf)+(2*PM*Nf)

If test data needs to be generated, then analysis time of two to

five man-days per input file must be considered. The actual data

production should be estimated to occur at 50 to 100 records per day.

The next cost category is that of operating procedures

conversion. Associated costs are difficult to quantify; however,

some guidelines are provided. If the JCL on the source and target

machines are similar and the differences are documented then one

should allow one programmer man-day for converting the JCL of eight

programs. If M is the number of programmer man-days required and Np

equals the number of programs then M = 1/8 * N . If the JCL's arep

not similar then M = 1/3 * N ; that is, one programmer can convert
p

the JCL for three programs in one day. The dollar cost then is

C0 = M * PM

171

Other cost categories which are mentioned but for which no

equations are provided are: support software conversion, facilities,

training, acquisition activities, and management and administration.

AFASPO Phase IV Estimation Method

The AFASPO suggested a modified version of the Hahn and Stone Model

for use in calculating an estimate of man-years required to translate

those portions of programs/systems that were not successfully

translated by the automatic translator[Air Force Automated Systems

Project Office, 1982a].

The documentation categories of excellent(O%), good(25%),

average(50%) and poor(75%) were used to adjust upwards the manpower

efforts to manually transition software. Since almost all of the

Phase IV effort is a COBOL to COBOL conversion, only the COBOL

productivity rates were provided: Recoding(29 LOC/man-day),

reprogramming(14.5 LOC/man-day) and testing(18.3/man-day). The

redesign rate was not provided since redesign is not allowed for

COBOL programs in Phase IV.

This first step is to calculate the total LOC to be manually

converted:

x = a - a*b

where:

a = total LOC for a given software

b = translator effectiveness(90% in Phase IV)

x = LOC to be manually converted(I of MITRE model)

172

Then to calculate the total man-years to manually convert and

test a system the AFASPO suggests using x above and:

x/d+(x*c)/d+x/e
y = -- *1.1

20 * 12
where:

y = total man-years to manually convert the software

c = factor for documentation condition(DFl of MITRE)

d = productivity in LOC/man-day for manual conversion(R
BC

e - productivity in LOC/man-day for testing(R)BT

20*12 = productive man-days per year

1.1 = factor to adjust for cost of documentation

Since the AFASPO's primary concern was to provide software cost

estimation guidelines, no other conversion costs were discussed. The

few cases of FORTRAN and Burroughs Assembly language systems which

are to be converted to COBOL are treated as new developments. The

AFASPO summarizes Wolverton's and Aron's methods and suggests that

the average of both methods be used as an estimate for these few

cases[Aron, 1969; Wolverton, 1974].

Wolberg's Model.

Wolberg analyzed a group of Rand Information Systems(RIS)

conversion projects and developed a cost estimation model which is

included in his recent book[Wolberg, 1983]. RIS has been

specializing in conversions since 1968 and has developed a variety of

conversion tools and aids which would cause the RIS effort and

173

duration data to be lower than if the same conversions were done by

relatively inexperienced personnel.

The RIS data consisted of nine completed conversion projects

ranging in project efforts from 59.1 to 343.8 person-months(assuming

173.2 person-hours per person-month) and ranging in project duration

from 7 to 32 months. Though various languages are represented, the

emphasis is on COBOL which is not surprising since, as Wolberg

states, more than 50% of the usage on mainframe computers is for

COBOL programs. A second set of RIS data includes duration

information for 31 projects but no effort information.

There is considerable scatter in the data, so a straight line

was chosen as the most reasonable model for representing the

functional relationships. A least squares solution for effort in

person-months(E) is

E = 7.14 * L
0 .47

where L = thousands of LOC to be converted.

The leas. squares solution for duration in months(D) is

D = 4.1 * L
0 .22

where L is the same as above.

Note that L, in the models, represents the total lines of code

to be converted. No mention is made of manual conversions. Since

these are RIS projects, one can assume that automatic translators and

other aids were used. However, the models call for the total LOC and

not only that portion of the total that is not converted successfully

by the automatic translator. It should also be mentioned that these

174

models are for the conversion category of recoding and that the

estimates derived include tasks associated with the entire conversion

project from planning to implementation.

Wolberg considered reprogramming and redesign as replacement

alternatives rather than conversion options. By his definition,

conversion implied that some degree of automation is possible thus

recoding is conversion. However, since redesign and reprogramming

are primarily manual operations, Wolberg classified them as

replacement alternatives. These definitions or re-definitions impact

the development of estimation equations only in the sense that

Wolberg assumed that the redesign of a system requires an effort

comparable to the development of a new system of the same size. In

addition, Wolberg assumed that reprogramming requires an effort equal

to one-half the effort required for redesign.

Wolberg used the model for new development derived by Walston

and Felix to estimate the effort for a redesign project[Walston and

Felix, 1977]:

Elm = 5.2 * L
0 .9 1

Wolberg stated that the distinction between redesign and

reprogramming was not clear; however, it was clear that reprogramming

implied a smaller effort. He used his 50% assumption and applied

this to the redesign model to yield a reprogramming model:

E = 2.6 * L
0 .9 1

The effort ERD signifies the person-months required to redesign

a system of L thousands of LOC and ERP signifies the person-months to

reprogram a system of L thousands of LOC.

175

Wolberg also made an assumption that the duration of a redesign

is the same as new system development and therefore used the Walston

and Felix duration model for redesign estimation:

D = 4.1 * L0 . 3 6

He also made an assumption that the duration for reprogramming is 80%

of the new system development or 80% of the duration for redesign.

Thus, the duration of reprogramming was defined as:

DRP = 3.3 * L0 . 3 6

Regarding the model for recoding presented initially, Wolberg

stated that since the smallest system in the RIS data base was 32,000

lines, the model might not be applicable to smaller conversion or

recoding projects.

176

APPENDIX B

DATA ENCODING AND PRELIMINARY ANALYSIS

Introduction

The general approach to the productivity analysis was a two step

process. First, the programmer resume and the program information

data were studied separately. This step is detailed in this

Appendix. Secondly, the separate data files were integrated, as

appropriate, for further detailed analysis. This expanded work is

discussed in Chapter 5. The preparatory work and preliminary

analysis presented in this Appendix includes encoding of data,

building of data records/files, and basic analysis of programmer

resume and program information data.

Data Encoding and Preparation

The goal of the encoding was to capture as much of the original raw

data as possible from the programmer resume form(Figure 1, Chapter4)

while keeping in mind the purpose of the data. To determine the

scheme for data encoding, the responses on 100 programmer resume

forms were reviewed and analyzed. Lists of responses for all the

questions were compiled and appropriate summary or explanatory codes

were devised to capture the raw information. The following comments

address the encoding of each specific data element.

177

The programmer code was originally intended to be three

characters with the first character representing the Major Air

Command(MAJCOM) or Separate Operating Agency(SOA) in the Phase IV

conversion. This one character code (hereinafter referred to as

MAJCOM), letter A through Z or number 5 to 9, was originally assigned

by the AFASPO to each organization. The second and third characters

of the programmer code were to represent the programmer(PGMID);

however, since one of the centers encoded their programmers with four

characters a total of five is required for the programmer code(l for

the MAJCOM and 4 for PGMID).

In the education section, the question of c:llege graduate and

degree produced a variety of responses. Table 17 presents the codes

and corresponding graduate/degree categories which were designed to

capture every conceivable inpit. If more than one degree was

indicated, only the highest degree was encoded. Thus the

graduate/degree category required one numeric character.

Table 17. College Education Categories.

Education/Degree Code

PhD 8
Post Master's 7
Master's 6
Post Bachelor's 5
Bachelor's 4
Post Associate's 3
Associate's 2
Some College 1
None 0

AD-A145 757 A METHODOLOGY FOR THE ANALYSIS OF PROGRAMMER 3/3
PRODUCTIVITY AND E FFORT ESTI.. U) AIR FORCE INST OF

TECH WR IGHT-PATTERSON AFB OH d D FERNANDEZ MAY 84

UNCLASSIFIED AFIF/C]/NR-84-44D F/G 9/2 NL

EiiniEEEiimEm
EEEEEi/EEl/EEE
111IIIIIII

H .0 ~2 111112.0I __ jIII

1111_ L. 51 1.14 -

MICROCOPY RESOLUTION TEST CHART
NAT.OA6 BA E[Al OF STANDARS -963-:,

178

The college major and minor questions also produced various

responses. Table 18 shows the major/minor categories that were

thought to capture the significant fields of specialization. Both

majors and minors used the same scheme and were thus allocated one

numeric character each.

Table 18. Academic Majors and Minors.

Major/Minor Code

Computer Science 6
Business DP/MIS 5
Math & Engineering 4
Physical & Biological Sciences 3
Management or Other Business 2
Social Science & Other 1
None 0

The question on formal instruction produced the greatest and

most varied spectrum of responses. Since COBOL, COBOL-74, AFOLDS and

Sperry-Univac training were known to be of interest, they were

specifically broken out. A caution in this area is that an

individual which showed no or little formal training may have had

excellent academic courses paralleling the formal training. Table 19

shows the binary categorical variables chosen to represent an

individual's formal training. A code of I means that the individual

had formal training in that category.

The programmer resume form questions A, B, and C, under

"Background", requested quantitative responses of number of years,

thus encoding was unnecessary. Two numeric characters were allowed

179

Table 19. Formal Training Categories.

Areas of Formal Instruction Binary Variable

COBOL-74 FTNG6
COBOL(all except COBOL-74) FTNG5
Air Force AFOLDS FTNG4
Other Languages, DBMS and FTNG3
General Programmer Training

Sperry-Univac Training FTGN2
Software Engineering and other FTNGl
HW/SW Air Force or Vendor

Training

for each response. Question D attempted to qualify the experience

presented in the preceeding questions. The response to this question

basically indicates the respondent's programmer type. Table 20 shows

the categories of experience or programmer types possible.

Table 20. Programmer Experience Categories.

Programmer Experience Title Code

No Experience 0
Maintenance 1

(If Development Exp. % is 0-33)
Both Maintenance and Development 2

(If Development Exp. % is 34-67)
Development 3

(If Development Exp. % is >67)

The wording used in question E caused some confusion. The first

part of the question states: "If the majority of programs you shall

be transitioninq are not COBOL, then what type of system are they _?"

Some responded "COBOL", others "N/A" and a few others another

180

language. The problem here was that an "N/A" response could mean

"COBOL" while in other cases it might mean the programmer does not

know. Table 21 indicates the program/system language type encoding

used. The four languages shown in the table are the only ones

possible in Phase IV. The second part of the question was allotted

two numeric characters to represent experience.

Table 21. Programming Language of Programs to Convert.

Source Language Code

COBOL(or N/A) 4
AFOLDS 3
FORTRAN 2
Assembler 1

Questions F and H were combined for the encoding since the

responses in question H overlapped and duplicated some of those in

question F. Table 22 shows the categories of transition experience

that captured the responses provided for these two questions. The

early Phase IV experience category captures the responses that

indicate participation in an early Sperry-Univac operational test

evaluation as well as a programmer's opportunity to work at a center,

different from his own, where a Univac system was installed for

initial testing and/or conversion.

The question(G) on JCL experience was allowed two numeric

characters and no encoding. In some cases the JCL experience could

have been from an academic institution since the experience quantity

was greater than of questions A through C which reflect years of

field experience.

181

Table 22. Conversion Experience Categories.

Previous Conversion Experience Code

COBOL-68 to COBOL-74 Experience 5
(other than Code 4 below)

Early Phase IV Experience 4
Other Conversion Experience-Considerable 3
Other Conversion Experience--Some/Little 2
System/Equipment Knowledge & Experience 1
None 0

Except for the language used, none of the responses on the

program information form required encoding. The language code was

taken from Table 21. The Batch, Online and Difficulty categories

were all designated as binary variables. Both Batch and Online were

included because there are some systems that utilize both.

Data Entry/Data Records

The programmer resume data were first encoded and then keyed into an

IBM PC which was used for the basic data entry and initial data

editing process. Programmer resume data records(Table 23) were built

on a 320K diskette and the IBM PC line editor was used for data

corrections[IBM, 1981). Printouts of the files were produced on an

EPSON MX-8OFT attached to the PC. These raw listings were used for

desk checking the data. Once the files were cleaned, they were

transmitted to a main frame(Amdahl) where the Wylbur text editor was

used to collect the records.

182

Table 23. Programmer Resume Data Record.

Field Bytes Variable

Programmer Code
MAJCOM/SOA 1-1 MAJCOM
Programmer ID 2-5 PGMID

College Education 6-6 DEGREE
Major 7-7 MAJOR
Minor 8-8 MINOR
Formal Training
COBOL-74 9-9 FTNG6
Other COBOL 10-10 FTNG5
AFOLDS 11-11 FTNG4
Other Programmer Training 12-12 FTNG3
Sperry-Univac Training 13-13 FTNG2
Other Related Training 14-14 FTNG1

Total Years in Computer Field 15-16 TOTEXP
Total Programming Years 17-18 PGMEXP
COBOL-68 Years of Experience 19-20 C68EXP
COBOL-74 Years of Experience 21-22 C74EXP
Programmer Experience Type 23-23 PTYPE
Source Language of Programs 24-24 CONLAN
Experience with these Programs 25-26 SYSEXP
Conversion Experience 27-27 CONEXP
Years of JCL Experience 28-29 JCLEXP

The program information form content was modified slightly

during data entry. AFASPO personnel commented on an early proposed

data record format stating that the DSD and System Title were

superfluous and unnecessary. The system code and program title(or

program code) are all that is required to uniquely identify a record.

In many cases there is even overlap here since the system code is

part of many program codes. Table 24 shows the program information

basic record. As was done with the programmer resume record, the

MAJCOM code is extracted from the programmer codes provided in the

activity matrix. The MAJCOM code becomes the leading character of

183

Table 24. Program Information Data Record.

Field Bytes Variable

MAJCOM/SOA 1-1 MAJCOM
System Code 2-3 SYSCD
Program Title 4-9 PROID
Date Started 10-15 STDATE
Start Lines of Code 16-20 STLOC
Data Completed 21-26 FIDATE
Finish Lines of Code 27-31 FILOC
Type Information

Source Language of Program 32-32 LANG
Batch Type 33-33 BATCH
Online Type 34-34 ONLINE

Difficulty
Sort 35-35 SORT
Zip 36-36 ZIP
Switches 37-37 SWITS
Comp Data 38-38 CDATA
Call 39-39 KALL
Reel#'s 40-40 REELNR
Random I/O 41-41 RANDIO
Copy(libraries) 42-42 COPY
Interrogate 43-43 INTER

Number of Programmers Assigned 44-44 NRPGM
Activity Matrix
Programmer One ID 45-48 PA
Documentation 49-51 HRA1
Data File Transfer 52-54 HRA2
ADS Translation 55-57 HRA3
Create Control Language 58-60 HRA4
Test/Debug 61-63 HRA5
Miscellaneous 64-66 HRA6
Knowledge Code(Knowledge of 67-67 KCA
Program: 0=not at all...

6=wrote program)
Programmer Two ID & ETC. 68-90 PB

HRBI-HRB6
KCB

Programmer ETC.
As many programmer sets as specified in NRPGM.

184

the record key and the programmer codes in the activity matrix are

reduced by one character. Notice that a variable is added before the

activity information to indicate the number of programmers that

worked on the program. The variable of number of programmers is used

in building the records of the program information file. The size of

the records is variable depending on the number of programmers

included. Since the length of the records may be greater than

Wylbur's 133 character maximum, TSO was used to receive the records

transmitted from the IBM PC.

Basic Summary of the Data Base

Because of its power, flexibility and ease of use, the Statistical

Analysis System(SAS), was used for the analysis of the data(SAS

Institute, 1982a; 1982b]. Included in this section is the first step

of the general approach of the analysis methodology. The programmer

resume and program information files were viewed and analyzed

separately.

Programmer Resume Data Analysis

The initial data submitted by the conversion centers was that of

programmer profiles or resumes. Over 320 programmers are involved in

the conversion effort. The exact number has varied slightly due to

personnel turnovers and new hires. The following information

describes the programmer resume file.

185

The simplest description of the programmer file is that of

programmer type or programmer experience type. Table 25 presents the

programmers as they see themselves and their experience.

Table 25. Types of Phase IV Programmers.

Experience Type Frequency Percent

No Experience 31 9.5
Maintenance 78 24.0
Both Maint. & Dev. 132 40.6
Development 84 25.8

325

A description of the programmer's academic background is the

first part of the programmer resume form. Using the encoding

presented earlier, the degree information sorts into the categories

as shown in Table 26. Notice that there are no programmers

classified as having PhD or Post Master's education.

Table 26. College Education of Phase IV Programmers.

Education Frequency Percent

None 141 43.4
Some College 50 15.4
Associate's 34 10.5
Post Associate's 9 2.8
Bachelor's 72 22.2
Post Bachelor's 7 2.2
Master's 12 3.7

325

186

Computer science was the most frequently cited major field of

academic specialization. Table 27 shows the majors and minors as

summarized in the categories chosen during encoding. Since the

academic major is the best indication of a person's background, only

the major was used in the analysis.

Table 27. Summary of Majors of Phase IV Programmers.

Majors/Minors Frequency Percent

Computer Science 49 15.1
Business DP/MIS 27 8.3
Math/Engineering 17 5.2
Physical Biological Science 5 1.5
Management & Other Business 24 7.4
Social Science and Other 28 8.6
None 175 53.8

325

The formal training or instruction section of the programmer

resume form permitted the greatest latitude of responses. The

encoding of the responses produced the classification of training as

shown in Table 28.

Table 28. Formal Training Profile of Phase IV Programmers.

Formal Instruction Area Frequency

COBOL-74 16
All Other COBOL Training 162
AFOLDS 49
Other Programmer Training 239
Sperry-Univac Training 283
Other AF/Vendor ADP Training 167

187

Of special interest in this endeavor is the conversion

experience of programmers. Table 29 presents the conversion or

transition experience as given by the programmer in response to

questions F and H of the programmer resume. Notice that some

considered their knowledge of the system as conversion experience.

Table 29. Conversion Experience of Phase IV Programmers.

Conversion Experience Type Frequency Percent

COBOL-68 to COBOL-74 Experience 5 1.5
Early Phase IV Experience 48 14.8
Other Conversion Experience-Considerable 13 4.0
Other Conversion Experience-Some/Little 55 16.9
System/Equipment Knowledge & Experience 8 2.5
No Experience 196 60.3

325

For nominal or categorical type variables such as those

presented above, the most commonly used analysis technique is that of

the Chi-Square test of independence which is typically accomplished

by means of two-way tables[Roscoe, 1975]. This test was accomplished

on all variable pairs of interest. As mentioned earlier, the

academic minor and responses to question E (system or conversion

language and associated experience) were excluded from this analysis.

The results of the Chi-Square tests revealed that the categorical

variables were defined with too many levels. Almost all of the tests

were invalid because the matrix or two-way tables were very sparse or

over 20% of the cell counts were less than five. After reviewing the

literature and studying the percentages of various categorical

188

levels, some recombination of categories or levels was thought to be

appropriate. Table 30 shows how the college education(DEGREE),

major(MAJOR) and conversion experience(CONEXP) categories were

regrouped for analysis purposes. These new categories also appeared

to be more meaningful.

The newly regrouped categorical variables were subjected to the

Chi Square test. Table 31 summarizes the tests of the null

hypothesis (Ho) that the variable pairs are independent. The level

of significance or probability of Type I error (rejection of a true

hypothesis) chosen for these tests was .10. Notice that t correct

terminology when probability of a Type I error is greater an .10 is

that one "can not reject Ho". This is true because t) Thi-Square

test does not prove independence but only allows one to -ume that

independence is probable. The SAS tests also provide measures of

association between the variables.

The quantitative variables of years of experience were analyzed

by means of factor analysis. Rushinek and Rushinek regard factor

analysis as a process of identifying variables which are highly

correlated and somewhat redundant and suggesting new independent

variables or factors to replace the original ones[Rushinek and

Rushinek, 1983]. Table 32 shows the partial correlation matrix and

terminal factors which result from the SAS Factor Analysis. Notice

the high measures of correlation and that the six variables are

reduced to two factors. The results indicate that the information

content of the six variables may possibly be provided by two

189

Table 30. Regrouping College Education, Major and Conversion
Categories.

New Education Types Frequency Percent Previous Categories

None 141 43.4 None
Some College 93 28.6 Some College

Associate's
Post Associate's

Graduate 91 28.0 Bachelor's and
Higher

325
New Major Types

Computer Science 49 15.1 Computer Science
DP-MIS/Math/Science 49 15.1 Business DP/MIS

Phy/Bio Sciences
Math/Engineering

Other 52 16.0 Social Science
Management and Other

None 175 53.8 None

325
New Conversion Exp. Types

No Experience 204 62.8 No Experience
System/Equip. Know.

Some Experience 55 16.9 Other Exp-Some/Lit.
Greater Experience 18 5.5 Other Exp-Consid.

COBOL 68 to 74 Exp
Early Phase IV Experience 48 14.8 Early Phase IV Exp

325

190

Table 31. Summary of Chi-Square Tests.

Null Hypothesis(Ho) for test: Variables are Independent.
Alpha Level Used was 0.10.

Variables Tested Results of Test Prob Type I Error Association

MAJOR & DEGREE Reject Ho 0.0001 0.668
MAJOR & PTYPE Can Not Reject HO 0.5072 0.158
DEGREE & PTYPE Can Not Reject Ho 0.3860 0.138
DEGREE & CONEXP Can Not Reject Ho 0.1473 0.169
MAJOR & CONEXP Can Not Reject Ho 0.3603 0.172
CONEXP & PTYPE Reject Ho* 0.0001 0.327
MAJOR & FTNG6 Reject Ho* 0.0314 0.163
DEGREE & FTNG4 Reject Ho 0.0480 0.135
DEGREE & FTNG1 Reject Ho 0.0536 0.133
PTYPE & FTNG5 Reject Ho 0.0023 0.207
PTYPE & FTNG1 Reject Ho 0.0262 0.166
CONEXP & FTNG5 Reject Ho 0.0519 0.352
CONEXP & FTNG2 Reject Ho 0.0208 0.171
CONEXP & FTNG1 Reject Ho 0.0325 0.162

All paired tests not shown resulted in No Rejection.
Most Training(FTNG vs FTNG) tests resulted in Rejection.
* Table is so sparse that Chi-Square test may not be valid.

191

Table 32. Partial Correlation Matrix and Factor Analysis.

Correlation Matrix

TOTEXP PGMEXP C68EXP C74EXP JCLEXP
TOTEXP 1.00000 0.76981 0.69660 -0.00316 0.21817
PGMEXP 1.00000 0.88327 0.09837 0.24922
C68EXP 1.00000 -0.06478 0.22330
C74EXP 1.00000 0.20803
JCLEXP 1.00000

Factor Analysis Pattern

FACTOR1 FACTOR2
TOTEXP 0.87365 -0.11573
PGMEXP 0.95173 -0.03793
C68EXP 0.91842 -0.17792
C74EXP 0.06721 0.85014
JCLEXP 0.38792 0.62766

variables or factors. The first factor primarily contains the

variables of programmer experience (PGMEXP), total years of

experience in the computer field (TOTEXP) and years of COBOL-68

experience (C68EXP). The second factor is mostly a composite of

years of COBOL-74 experience (C74EXP) and years of JCL experience

(JCLEXP).

Finally, Table 33 presents a summary of the programmers by

experience levels. Also shown in the table are averages for all the

years of experience in each area.

Program Information Data Analysis

When a Phase IV organization completes the conversion and testing of

a program, a corresponding program information form is submitted to

192

Table 33. Phase IV Programmers Experience Summary.

Experience Level of PGMEXP Frequency Percent

Trainee 93 28.6
(I or less years exp.)

Intermediate 78 24.0
(2 to 3 years exp.)

Experienced 54 16.6
(4 to 6 years exp.)

Senior 100 30.8
(7 or more years exp.)

Average Years of Experience In All Areas
Total Field Experience(TOTEXP): 9.68
Programming Experience(PGMEXP): 5.93
COBOL 68 Experience(C68EXP): 4.19
COBOL 74 Experience(C74EXP): 0.44
JCL Experience(JCLEXP): 1.59

the AFASPO. One of the centers, the Air Force Data Systems Design

Center (AFDSDC), has been authorized to report their conversion

progress by using an alternate method. The AFDSDC typically reports

every two weeks with general progress information and periodically

provides a man-hour report by system, not by program, without

detailing the programmers involved. These system level man-hour

counts were used during the cost estimation analysis presented in

Chapter 6.

The data collection for the programmer productivity analysis was

stopped when a sample of 130 programs was accumulated. A

presentation format similar to that for programmer resume records is

used to provide the essential facts.

I'

193

The first basic summary is that of the number of programs by

type and number of programmers assigned. Table 34 shows that the

sample includes only COBOL programs and only two programs had online

requirements.

Table 34. Phase IV Programs By Type and Number of Programmers.

Number of Number of Type
Programmers Programs Batch Online

1 51 49 2
2 24 24
3 22 22
4 20 20
5 7 7
6 3 3
7 3 3

130 128 2
*All Programs are COBOL-68 Programs

In order to have a supplementary difficulty measure, a count of

the number of difficulty categories checked was calculated. Table 35

presents the difficulty profile of the programs. The first part of

the table summarizes the counts of each of the difficulty categories

as individually checked by a programmer. The second part shows the

number of programs for each total count of difficulties checked per

program.

Table 36 summarizes the average number of hours spent on each of

the six conversion activities stipulated on the program information

form activity matrix. The table also shows the average percentages

of effort expended for each activity. It was discovered that most of

194

Table 35. Program Difficulty Counts & Totals.

Difficulty Count Difficulty Count

SORT 80 SWITCHES 55
ZIP 50 COMP DATA 49
COPY 26 INTERROGATE 21
RANDOM I/O 24 REEL #'S 20
KALL 13

Total Difficulty
Checks Per Program Number of Programs Percent

0 20 15.4
1 37 28.5
2 15 11.5
3 16 12.3
4 13 10.0
5 8 6.1
6 17 13.1
7 3 2.3
8 1 0.8

Table 36. Conversion Activities: Times & Percentages.

Activity Avg Time Percent

Documentation 2.93 4.6
Data File Transfer 3.76 5.8
ADS Translation 14.85 23.1
Create Control Language 5.33 8.3
Test/Debug 28.41 44.2
Miscellaneous 9.06 14.1

64.34

the data reported contained no count of man-hours for the first two

activities or categories: documentation and data file transfer. The

reason for this was that these two activities were typically handled

I,

195

at a system level and the accumulated man-hours were either not

reported at all or recorded on the activity matrix of one program in

the system. The impact of this reporting discrepancy was significant

only in that the total effort hours for productivity analysis were

derived from summing only four of the six categories of the activity

matrix. This increased the overall uniformity of the data for the

study. A collection of productivity and other measures which shows

the overall condition and content of the information file is provided

in Table 37.

Table 37. Productivity and Other Summary Measures.

Average Measures Mean Min Max

Lines of Code Per Hour(LOCPERHR): 44.4 3.53 396.8
Hours Per Hundred Lines of Code(fiRPERHLO): 6.0 0.25 28.3
Total Hours Per Program(excluding documen-
tation and data file transfer): 57.7 2.30 368.0

Starting Lines of Code(STLOC): 1175 121 4650
Finishing Lines of Code(FILOC): 1260 149 4849

To allow another view of the data, a file subset was created

which contained those programs assigned to only one programmer.

Using this file subset, a SAS generated cubic graph of the

relationship between lines of code per hour (LOCPERHR) and the

programmer's knowledge of the program (KCA) was produced and is shown

in Figure 5. Notice that productivity decreases as the programmer's

knowledge of the program increases. This counter-intuitive behavior

of the Phase IV data supports a statement by Oliver that programmers

196

converting their own programs may not resist the temptation to

"improve" the programs they are converting[Oliver, 1978]. No

conclusions may be drawn about other conversion environments and this

phenomenon may change as the Phase IV conversion effort continues.

This manifestation is discussed further in chapter 5.

The variable LOCPERHR was similarly plotted against the count of

difficulty(SUMDIF) using SAS and the results are shown in Figure 6.

As expected, productivity generally decreases with an increase in the

difficulty of the program. The initial dip or downward slope at

SUMDIF=O indicates that there are some complexity items not included

on the Phase IV program information form for the programmers to

check or some programmers failed to properly identify the difficulty

categories for their programs. Discounting the initial dip of the

curve, the decreasing productivity as the the program difficulty

increases is likely to be true of all conversion efforts.

197

S A4S
LOCPERHR
420

390

360

330

300

270

240

210

120

150

30

60

0 1 2 3 4 a

K C6

Figure 5. LOCPERHR versus Lnowledge(KCA) of programmer for single
programmer type programs.

198

LOCEEHR

390

360

330

300

270

240

210

ISO

120

90

30a

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0

SUMOIF

Figure 6. LOCPERHiR versus Program Dit~iCulty(SUMDIF) for single
programmer type programs.

199

APPENDIX C

PROGRAMMER RESUME FILE

This appendix contains the programmer resume file in its

entirety. For a description of the variables refer to Appendix B.

The SAS listing of the programmer resume records follows.

200

IA.InWXCL 000000000000O000000000000C.OOO000OOO00

Qr-VWXa. --- 000000-O-oo000-oc-ooooo(,00OOO-00o

4- - - C4 N C4 - 4

I'

IbI-ZtU- -0--000 ---- 0000----0 -- 0-0 -

0 .- CW 0 0 0 0 0 0 O~0 0 0 0 0 0 0 0 0 0 0

I- o c 0 0 0 0n 0 0 00 0 0 0 1 0 0-u-0

cc ~ ~

at ~ w U.J 4 --------------- -

0.UA.

I .- u~
00 1 00- - - - 0- - - - - - - - - - -

201.

o-fl'ujnxo. ooovoooooo00000000000000000OoIn000
0 0

ur-vwx0. 0000OOO00O00cIOOOWOO 000 o00o0o

CL ~ 4C4 -x jx0 N NN

L I-w a -- X- C4 C4 (4NCN4 N- C

U-
z

SU.I-ZC- --- 0000-0 -- 0-00--00--00000 --- 00

---L~ -00-0-00 --- 000-0-0-00 --- 0 ----- 00

I. uoi-ZCO 00000--00-0-0-0 --- 00-0.000000000000

u.)-Z(3kn -- 0-0-0---- 000 -- 000--00--00

L60-ZfJW 0000000000000000000000000000000000000

Z4110o -O00OO0W0W 00In0000oo-0000-e0eaoNon0IyN

owComww VO -O NO VO V0o0 -voovov

24~uOZ vv vv-wo 00 00owWWWWWWCCCWCCCCWoCCWON zzz-zz

202

CUOZWXCL 000 0OOMN00ONOCO0VONOO000000cON

n~.'d000O0000000000-00000000000000000000o000

uI*-wuxoL -0000N0000000000-0-0-0 ---- O0000-0-0000

uwwwxa. M-WOOOOfl000 :-0-0000 oc,-N--Nw

LU I1.0-W)CL. W W ~ 0 N 0 W O f- 2 0 ~ .
cy N NN C4 M C

L"
66I z -LZ ----- 0---00-0- 00000000000-0 ---- 0-

Lu

ce L mZcON - -0-- 00000 -- - - - - - - - - - -

Lw

wou-ZcO'q 0000000000000000--0000000000O000000~0

I.-ZCZW 0000--0000-0000--0000cj0000000o0-0 ----

%&.-zCw 0000000000000 --- 0-00000-000-00-00-0

Z-zam WD000OWO0N-Ow000e~N000000O00In00o-00

Z4~0 V O0CO00WOW0IN0N000V-ac 0N000000Lw000Nv-

4w~ w MI M .W1 1-1 u A

Z20a.O I~i~z

o4C)0 ZiZZ Zn

mmmmmooooo:

203

ui,-ulwxa. 0000000Cooo0Occ000000O0LnOOO-00-0O0c

UtF-VUXO. 0ooO0O0O00O00000000000000oe,0OO00c

mowuwxm. N- - - - - -4 -

0. cv N xv N C4 - N - N - C'4 -- C

2 U.P -20::--- ------ - 00 - - - - - -0 - - 0 -

m IZ(000000000000000-00000-0"--0-000-00-0-

U Ifl -- 00 - - - - - - 0-0O --- - -00000-00

i&b.-Zfjw 0000000000000000000000000000000000000

Z-Z0m 00000O00O0000000000000000000000c'N0-0

X-C-Doc OO O V N O O O O O o o c c o o o o -

OW(OMWW --- 00 mvo0e00--0o.000q000000 -- 00.T(N0,r

0-C4 r -
z000000

w U.z- w0 MZQ a w U 1Z. - 0 M4 4 4 4 A

z4~0 x fX~j.J.. - 1 -. i- j- iZ XZ 2ZX Z XZZ 20 00 00 0

-1 c

204

fUiWXCL ONOOOOOOOOONOMOOONOOOO0OOOONOO-OOOW

wf-qvwxcL O-ONOOOOOiMOOO---O--OcOOOOOOO--OO--OO

N - - NC4

UJ - -N --

ma %& Zor OO0-0O0O00O--- 0- -- 00O0QO--0OO-OOO0-
&A

wh

J u.-ZOM 00- - - - - - - -- OO.OOO-0-00- - -

0 .. i-.Zcjw 000-0000--0O00O000000OO0-O-0000000000
ac
CL

I-ZoM 000-000 ---- 000-00-000-0-0-0-0000O---

U.I-zrj 00000-00000000000-000000o000000ooo0o0

Z-Zom OOONMOOOOWOOOOONNONV0OOOOOOONNOOVOO

z42"0Uz oowoo vooowwWWOO VWOO

owCoUww -o vo - -0 0 0 -VN NO O -w o o

O.CII.O 44 444---------------Z-----~ Z ,

205

Uo~wc WOVO0OO0-N0N0-00NOOON-O00......

Lfl>Lflwxc. 0000000000000000000000000000000000000

ud wo&J)0O 00000000~0000 00000 00 ---- 00 00 - -0

0 - - -0 - ---

9 O-w a

0 upI.-ZCJ 000-00 000000 000

I ..Zi 00-0-000--o-0-o0--o 000 -0- 00 -

0 i.P-.Zo 0000000000000000-00000000o000000000

uX-Zoc wOOOOOOOOOOOOOOomoOoNOOOoOoOooOOoOO

0

ocovs~0 0ewmmmmm 000000 0- NNNe~c

206

"JU.ZWXQ. monOOOcflOmomOcOwOmOOOOOOOOOOOOOOO0

UOnWXC. OOOMOOOOOOOOooOOOOOOOOOOOOOOOOOOOOOO

UOZ.JlCZ

w pouixCL NWwwf vmQ v-OqOV-- M---O --OOO-c--

-0- 0--0- -- o v -N

w

z u.P-Z(JY -0-000---000-00--0-00 00 0000 0 0 -0-0

a

011Z. -- 0000-0 0 -- O -- 0-00--0--

m I.i-ZOW 0000000000-00000-00000000000000000000

z.-zota 0~000000000000-0O0000000000O00000000000

14ZOZ WOOri-00000U0000o00OO00000f00000W

201.301Z wwqO00oo400qYOWW0000000000t'0O0000

&OZ-0

cowZ U U U U U U U U U U ~ '

207

~xa. O-OOcOOme7-0-QOO0fl-OO-O'O-- -- 00NOc90

(JozwxO OwOOOOqOOOOOqOwYONOOOOOOOVqNMOwOOOwYV

QFl-WfWXCL 000000-0000000000-OOOOOONOOOOOOOOO

C-4-4 N 4NC

tJlqwxo. - 0 0 0 0 ---- 00 00000-0 0----- O O O -0-

at eew-20C -- - - - -- - ------~O O -0--0O O-----

@0w0 O Q- - O O O QOd~(

Z &.-Zoz. -- OOOOOOOOO--0000No-000 00-00

V 110 - >-0-

0 00 l 2 4'Ut a-r-o w wom f

20e

(J0Zwxma 00000Y040Q000mONm('iOUwO0

Il"-OLW)C 0000000000000000-0000000N000-

Uf-VWXIL 0-00-00-O-0000O'0-00MO00-00O000

uwwwxg. -ewN-0c-V"0w0'-c~c.'0qw-00

mox0wxQ.

M C4-- -M-

LL.

LU

1 .l-O 0000000-0000-0----- 0000-
at

& '120ew -0-0- 00 -00--000

0.U.0-Zats 00000-0000-000000000000000000-

Z-Zam 0-00-yw00eo00m'40qevm00O000e4

O.OZ-- -? - - - - - - C4 C440 (0Z.,

14lU0 C4 m m m m mm m m m m

209

APPENDIX D

PROGRAM INFORMATION FILE

This appendix contains the program information file in its

entirety. Appendix B contains a description of the variables. The

SAS listing of the program information records follows.

210

CZ Cc ~ o ~ o o o o

.m

t .4 ' 0000000000000o w a

I~~c a<o- 00oooooo m

0 04 0 0.
000000000000-00

VMV N uoo - o - 0 o U. I.

=MA"- 4 000000000000000 = W

U, o =a :060C o 6-

OOOOMMM-00N-e0O0

.z . .o

Z 00000000000000

S; 00000--- -- 00000 cUw

Z 000000000000000

o ' Lai j M 0000 ------ 00 -- U

% 4 J.j 000000.0000-0000 Cmc L

0 3-.-I 0 0 00U

a 09 1.- 00--0 -- 00 0 0...............

O Z i-Zw 0

1 b . J.

U. 0w -4 6w -a to.P.r.P..o w w

Z < u

Cz7J0 Uf0 (4 ~ Il 0If .F

U41 - oWowlawIwwwwwwIww

000000000080000 = J.

0mu~~c w~lr m O 1 (Y f lau

03-- uo ftfr~w L6UL6U 0.0. L cccc oI

211

a:w0 00 0

xu- 00 00 0: 00 00 2M

" C 00000000000000 = =. .

00000 000000 ==00 0

V---- 000t

.

Z 0N0000w0000000
x O U--0--.000000000 . . .

wz. . p pp p m O O OC Jw
XM4-- 0--0- 0000000000 =(LC I.....

-Q-uj 000000000000000

C- - 000000000000000

Mww..ZM -000-0--0000000

X4.4.. 000000-----O0--

= m wU. U4k-w 000000O-0000000
9- I~- I 0 -- - -0-00000000
N-- 00000---000000~= m o

OZ.i-Zw 000000000000000
Q

.. iiZID...............Y

U.-.J J .w.. ..00 1.. .0.

-.

ln ; v V-rxxxxxxkr coo xu (..0 0 . . .

CCI~J(0 0 C Qm 0 Q c oc

a u a

r- 0 N -CzuI

F0 x xm xa o M

8§0000000000000
"n;;244" V u c.0000

a ~- 0 > m XXXXXXGxxxx Cmi cW ... 0000.... .

0. r) w N N N N N N FMN N Nn0I

ilA 0>>,>NNNNNNNNNN m C01w- 0.

212

cz c 4 0 0 0 . . 0 x c Ln
X z c a - 0 0 0 0 0 x M 5

oo-in-ooooooooooo Q.0~

:~40100000000000000

-zm-m 000000000000000

4 z c C4.J 000000000000000 xMU 1

U.J- z . wa 0 0000000000000 jt
.301-4000000000000000 -

I

-"L 0 0 - 00 000--j

ao--w0000000000000 xacan u~~0

ZCe0C4~ 0000 ..

cco- ux w .30.0.0. 0004 ...4
409 ~ nu CM z 0 . . .

U-Cj NNN d0 (on 02 Ion :: m am z w 0 . . 0 00

24 U0 ccQ .n 4
00-04p0-4-w~f

0~~tn czfC (9 q q ' (mi C4 . . 00

21.3

x accw -0-0-0000000 .0

=eoi *- o 00 0 n 0n.....0

x zcm 0 0 0 0 1 -00 . 10 0w0
N0 04 -a

m cC4 0 MO 00W0000 0 am o

000 00 ...

w . . .000 .00 ...
enaIC m9C NM .f v X m o-0

x m4 w "NOCMDC0C00000o r .v .. 0 0
=m4 MM~000fl000000000w

=MANM 0000000000'-v0c" ACM m-

-- COOO 000Y0CM = c ZU. C4 w 0mu to....00...

X mU.- 000 . .. 0

Z2LO IL .. *ooo

ii& -Zi-Ww 000000000000000
Z UOC.. 000-000000000-0 Iw

- AZO-O 000000000000000r- .

w ~w - zm 000000000000000 x z ww .*.. 0N 0in 0 a0..
z 4~. 000000000000000 = Zw *0 .. 0 a0 0 *f0Y

m0 uo041-- 0000000000000-0
- 0f3-1-01 000-000000000-0 = zU 4 ... 0N00 0 0...

2 fm- C 000- -- 0 0-00 0 Xcl s - O0M - OC40

u0 c - 00--000000.-0--0
Xwooo.o.o.oo(ooo0 0 C 4 0O4M 0 . . .

0 O~i-Z 0000000000000
x a a(a .0 m IO0000M(...

m1 2 Cie 0 LO . . 0 t C l r 0m ...

z a a t, . .o . *ocoOooooo ..

=0COM . 0-0000000..

xu .. *000"M0000 ..

cq* C4- Zu l 00 0-cm 0-0 0...

x u to . . .~rj 0 0 0 0 mIn l 0C4
Motmo r- m

008000000000000
mL - (4 C IV N M f LO C4 MV la *u 0 0 0C4mn0 0 ...

C CsCas""N1 000 NM - C4

IA ~ U)I. Wf UI a' a' am ca c xt CL U' "J L6 Xt X' X

000 w 0win000000 o woo

214

= o OO o o-- 0000

cc . .*-WOOcae'OOOOO le .Q a0.00000

z cc(.... 0000- 00000 in

e0 0 -.

0CJ C40 . .0 O. .

=40 -- --- 00000 --- ..

x z. .- cd-NO-0000 MWW-W z U. w

Zm4w mc00000000000--000 = 60 ...

NN> 000 0-0 000 0 000 Z w

Lu
S -Zp--Wm 00000000000-000 %

0-- Uw M.- 000000000000000 =Z I...

X = 420 000000000000000 = am

J0-41- 000000000000000 = u
cz U 0O00000 0000 000-- = a --
U. 0 fl- 0- 0000-00000-0-0 2 Z
- N-C. 00000-0 ----- 000 Q.W

M)o - 0000---o- 000----0- Q 0

z 0Z.-A-Zu 000000000000000 z w 0
0 Cc gP-U = - - - - - - -I 4

CL j A ao . .
U.-.J 0 Q N a (40 0w z am 0

Cc a -40

o~C - - - - - -O ,* N

at aZ . . .W.-.-..Wq' 4 .mO 0 . . .

000om0m mm ...- 0.0,o
u. -04- aWWCWLW

U . 0 C4 *00000
U .h0w r * " *00000

V3m l)m a C.)m m0 zUlQ0 . *o0o0
oo-O ozoooooo . . . o 0oooo

000008000000000 a . . 0 U4 0 0 0

000000 sgoo !2t

"30000-
02OQ 00 &NNN x w .. . O NN OO O

z c0 z IZ 0 0 00.0.0.0.00N0wr- 00"

coo o aV WWWWWWW -r-r-rr- 0U c L W N r-r-

215

m 0 cv - m flflN 1 0
ccIf W 1 W3 (- w- -

p p~ o o o .to o0 o0 o 0 . (.
000 ccIV m v(Nci0 0000 0

= Wm 0000 . oo ooo0 Cc a V3aL~ (i4 0000 r-00 0 0 CO

z W - 0000 -00000 . . .0 a m .. I . I...

C --- -- -- -0 C.

=L4w 000000000000000 0

Y. tj L
a= U.OO O O O Wm I.

ooo--vO;Wmmvm mW- = m

x cc.9 o N- C4 N mN "- v~C~f " 60

=M w 00000 0 0 00 0Xwrm

ZqWm OOOOOOifOigOOOOOO ~~.

c .000000000000000
0 O O O O ~ C4*

00000100000 O =ccwW

.9 OOOOON OOOOOOOOOO =M ui

CK

cc C m c v q - - - vL . .,
2 a 000000000000000

(wuC

ac .
0 2m0.(.71 00000000

u Q beO - --O 0Q

z Zzwm 000000000000000 cz 0W
4o

z 94.1z-1 0000000000000000
z i 0ww. 0. 000000000 000 --- 00 z ao

VI3 00000000000 - -000
4 0 00.-. .
at N- 00000--------- 0000

o 0-- C4 .-. . O

N0.vmm xiu -(oo . .0.0.0.

0 -1J0Zu 0 0 U0 000 m00.0

m. N. 4 ac Cm o
C4- e M- 0 00 0 0

01-040-w0C 0r-fl
= Mu 3 0000 Ng0 00......

000008000000882of M -- - 4m1 tu 4 0000 * 00 0

1200 'M - 0 0000 . . .
wom 003MNNN

x U CO in ' 4a W W 40 . ..
0)-.uiUQ S U U U U w

atm co OP -00000 ... 0

%0 141c m 0 (4 m v W00W0 t-QO30
0 40IA F-P.r- r- a o o aa o D c L F V F f-~ IN 0 0 acoc0 ca so

216

:X4'Y OCMI0W:000000000

V*V ' 0 M, L 000000000
- mCO 000000000

N C4,

ZMAeN 00i0000000000000........ .. c - 0 .0 .. .000000000

XM N 000000.00000000

~~m00 0000 0000 0000

000 -D 0000iW0000

-Z-Ni 0000000OU300-

V 0 a;. 0-000000000000 mutol-W wC4 N

cx u~w 0-0 0 M, M, M,0000
muww-iZm 0--000-0-0-0000 00 000Oco

w 4l1 -00000000000000.
mmum~ 0O2C MVqWWOOON

w, C.)4 0 0 --

z =MUC4 000 .. 000000000
0 0l3- -fl -- 000 ---------

= czu- 000 .* .000000000
4 N'-M0 000000 - - - -

0 a cx ,- --- 000 -------
U.

! O.j - zw 000000000000000 xuc - nmr

x 000 0000000000
4c AJ.U - --- -- -- ------------- .

0z xJZ = a 00o O v----0

CL 00D 0000000000

u.-..~~~0U 003w -C4fw

x a cov 10 C4 OOOOOOOO0ON
to

0 0000 0 00000 0 00

x mcc m ~ 6 o. It00000v m w w

0- ~ ~ ~ ~ ~ 0~. 00aC'r-M tdwov- NO

O,-r-f-r-8 0o ,ww w
Iwo~ 0rr Nno"Oom = m ca- 000 -0000000000

0000000i-0000000

CL 0 00- N N N N N N N N N4 N N N
U~,.flocc200000000000 o4L 000000000000000

o0oD0C"l 00000C.C.

031-OVO xm~~-i - 00- 0 00 -0

OW"? *nwIooohoOvNN

xI

217

0 0

x c = 0 0 c
t . .0

Z 0 0

0 0

cz C4 0

Z - 0

cz 0 0

w

0.

u U. 0

0

0
0 0 00

(a 0 000.

w= 00 . .0

X lz wm 0

U.

czw-- 0 0 00.

O.L Z ZZZ

U i 0 0 ..- 0-00

o a ooooooooo

gao in o o. . o o. .0 o oo.0

x w 0 . . 000.0000o 0 n 00.W-000000

Z0n 0 0 m "oo

X~ow 0 *0 60NO0

0 000000000

tC
a~C. If 0 .~ U300000000

0 000~000000

C4...M6 0 0 6

218

(0000 00000W~c0
CN r-c

.-

Zmco - 0 Oo00000o00 0ao

=MAW 000000000000000V

M. AIn 00000f0000000000w.....

MAv 0
0 0 00000000000

000000000000"o-

0000 60000 0OWnN 0 c

A "C 0000000000Win000 xu w 0.......

-~ 14-000000000000000 Zw~l*

-Z u t ---w - 00-00 X0....M0
qc uca;. 00000000000 --.--
x 3.~ ~4Z --------- 00-000 *

IL0
W' ~W-A zm 00Qoo00000000.

XA43 00000000000

--------- 0--000 0 0000000004o

---- 00 ---- .0N M 0
0.~~~~~ 0I----0-~ 0in N~ -

a 2-1" z 000000000000000 =MQV 000000000......
M 1. X - -- -- -- --- - =MOM 000000000

-J4Z Yw w yyzw ~ (3 =MN 000.000000......
N0~0~~N ~ - 000000000......

000000ooocNN~-- XMUW 000000000.'0..

!0 N0 0ID W M t to 000000C40c .0 w

N 0fl~.4,. or MU - - -0 - 0

~0000820Oo80000 ZQ C 000000000 *0 .
r- c (N n ' r-cc U- 000000000 .0 .

macN-rONNLNIV -1 ~ j -- j 1j -j
OCCOCCOO0003X

x cc cc %a - - -0000000 0 - 0000

U~~IflL20~ cc00 00(A)3
- -- - - - - - -6

219

w 00 ,00000- 0

X U4 .V.

~CI w X

w40100000000

m 0 M

=acmi 0000000000

CV v
u Q<- z m0000 m

00000000. . .
.2 0.0-- MX . .

N0-- 0--000 0 0 & in

00 0 toi t 00 0 Qz U.w
" -Z w 0000000000

- ~ ~ ~ ~ C U4 00 -0 0 - 00.~e

"0 U w . . .0 0 . .00•

Sz 0•0000000 w .

4 za -000 . .0 . .""

Z a0 0-000000000 ccig *A . 0
z

u 0 .- 4 - -- 0- 0oxr a~0 . .. 0..

x CL~-2 0000000000 cc. t . .. 0......

.. II I II I.. I- - I I ii - 0 lz a I

0 a Z -U - Z w 0 0 0 0 0 c0* m *W..

CL 0 4 U -- - - - - -cca . . .w

Z 0 1 6 f 0.0 vv w w v vaa- ...

U. -10U uI~4 W x(J . . .*000

.~u . . 0(* Re

v I r- m m i 2 W . 0WC'

; W W W . *ooo *

00-0m wm C4w.~J-0' .S 00 .W0 0 Ul

--- -4C1- -

(12U(0 at v 0 -co 0 4

W1W.,2 -c"7Wu 0 Z20

cooi owo40CiN. Q1/ "m"NN"N"M044(

220

VITA

Major John Diego Fernandez, U.S. Air Force, was born on 13

August 1947, in Corpus Christi, Texas, the son of Mr. and Mrs. Fidel

F. Fernandez. He attended Texas A&I University and received a B.A.

degree in Mathematics in 1968. Prior to entering the Air Force, he

was employed as a mathematician-statistician at Kelly AFB, San

Antonio, Texas. Major Fernandez received his military commission in

May 1969 and has served in various capacities since then. He began

his career as a Communications-Electronics Maintenance Officer and

after receiving his M.S.E. degree in Industrial Engineering from West

Virginia University he commenced working in the computer field.

While assigned to the Pentagon, Major Fernandez served as programmer

and systems analyst in support of the Joint Chiefs of Staff. He was

subsequently assigned overseas as an Exchange Officer with the

Venezuelan Air Force where he served in the capacity of Chief,

Systems Analysis Division. His last assignment was with the San

Antonio Data Services Center where he worked as a Telecommunications

Specialist and Chief, Customer Assistance Division. His decorations

include the Meritorious Service Medal with two Oak Leaf Clusters, the

Joint Service Commendation Medal and the Venezuelan Air Force

Commendation Medal. He is a member of Alpha Pi Mu, Upsilon Pi

Epsilon, the Computer Society of IEEE, and ACM. His permanent

address is: 906 Nineteenth Street, Corpus Christi, Texas, 77840.

